Skip to content

[MatmulLoopPipeline] Populate LoadOp mask to PrefetchOp #4030

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 28, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 20 additions & 12 deletions test/TritonIntelGPU/loop-pipeline.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@ module attributes {"ttg.num-warps" = 4 : i32, "ttg.threads-per-warp" = 16 : i32,
%c0_i32 = arith.constant 0 : i32
%c1_i32 = arith.constant 1 : i32
%cst_0 = arith.constant dense<0.000000e+00> : tensor<64x32xf16, #blocked>
%cst_1 = arith.constant dense<0.000000e+00> : tensor<32x256xf16, #blocked1>
%c63_i32 = arith.constant 63 : i32
%c255_i32 = arith.constant 255 : i32
%c31_i32 = arith.constant 31 : i32
Expand Down Expand Up @@ -79,25 +78,34 @@ module attributes {"ttg.num-warps" = 4 : i32, "ttg.threads-per-warp" = 16 : i32,
%51 = arith.muli %arg7, %c32_i32 : i32
%52 = tt.splat %51 : i32 -> tensor<32x256xi32, #blocked1>
// COM: There are 3 stages in loop pipelining, the first 2 prefetching stages are before the loop and the last one is inside the loop.
// CHECK: %[[LOAD_MASK:.*]] = arith.cmpi slt, {{.*}}
// CHECK: %[[LOOP_MASK:.*]] = tt.splat %[[LOAD_MASK]] : i1 -> tensor<64x32xi1, #[[$BLOCK_0]]>
// CHECK: triton_intel_gpu.prefetch {{.*}}, %[[LOOP_MASK]] {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
// CHECK: %[[LOAD_MASK:.*]] = arith.cmpi slt, {{.*}} : tensor<1x32xi32, #[[$BLOCK_0]]>
// CHECK-NEXT: %[[LOAD_MASK_2D:.*]] = tt.broadcast %[[LOAD_MASK]] : tensor<1x32xi1, #[[$BLOCK_0]]> -> tensor<64x32xi1, #[[$BLOCK_0]]>
// CHECK-NEXT: %[[LOOP_MASK:.*]] = tt.splat {{.*}} : i1 -> tensor<64x32xi1, #[[$BLOCK_0]]>
// CHECK-NEXT: %[[PREFETCH_MASK:.*]] = arith.andi %[[LOOP_MASK]], %[[LOAD_MASK_2D]] : tensor<64x32xi1, #[[$BLOCK_0]]>
// CHECK-NEXT: triton_intel_gpu.prefetch {{.*}}, %[[PREFETCH_MASK]] {{.*}}triton_intel_gpu.block_io = "row_major"{{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
// CHECK: triton_intel_gpu.prefetch {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
// CHECK: triton_intel_gpu.prefetch {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
// CHECK: triton_intel_gpu.prefetch {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
// CHECK: scf.for %[[VAL_92:.*]] = {{.*}} to {{.*}} step {{.*}} iter_args(%[[VAL_93:.*]] = {{.*}}, %[[VAL_94:.*]] = {{.*}}, %[[VAL_95:.*]] = {{.*}}, %[[VAL_96:.*]] = {{.*}}, %[[VAL_97:.*]] = {{.*}}) -> (tensor<64x256xf32, #[[$DPAS]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>) : i32 {
// CHECK: %[[LOAD_MASK:.*]] = arith.cmpi slt, {{.*}}
// CHECK: scf.for %[[VAL_92:.*]] = {{.*}} to {{.*}} step {{.*}} iter_args(%[[VAL_93:.*]] = {{.*}}, %[[VAL_94:.*]] = {{.*}}, %[[VAL_95:.*]] = {{.*}}, %[[VAL_96:.*]] = {{.*}}, %[[ARG_13:.*]] = {{.*}}, %[[ARG_14:.*]] = {{.*}}, %[[VAL_97:.*]] = {{.*}}, %[[ARG_16:.*]] = {{.*}}, %[[ARG_17:.*]] = {{.*}}) ->
// CHECK-SAME: (tensor<64x256xf32, #[[$DPAS]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<64x32xi1, #[[$BLOCK_0]]>, tensor<64x32xi1, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, i32, i32) : i32 {
// CHECK: %[[VAL_106:.*]] = tt.addptr %[[VAL_94]], {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<64x32xi32, #[[$BLOCK_0]]>
// CHECK: %[[VAL_107:.*]] = tt.addptr %[[VAL_95]], {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<32x256xi32, #[[$BLOCK_1]]>
// CHECK: %[[LOOP_MASK:.*]] = tt.splat %[[LOAD_MASK]] : i1 -> tensor<64x32xi1, #[[$BLOCK_0]]>
// CHECK: triton_intel_gpu.prefetch %[[VAL_106]], %[[LOOP_MASK]] {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
// CHECK: triton_intel_gpu.prefetch %[[VAL_107]], {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
// CHECK: %[[VAL_108:.*]] = arith.subi {{.*}} : i32
// CHECK: %[[VAL_109:.*]] = tt.splat %[[VAL_108]] : i32 -> tensor<1x32xi32, #blocked>
// CHECK-NEXT: %[[LOAD_MASK:.*]] = arith.cmpi slt, {{.*}}, %[[VAL_109]] : tensor<1x32xi32, #blocked>
// CHECK-NEXT: %[[LOAD_MASK_2D_1:.*]] = tt.broadcast %[[LOAD_MASK]] : tensor<1x32xi1, #blocked> -> tensor<64x32xi1, #blocked>
// CHECK-NEXT: %[[LOOP_MASK:.*]] = tt.splat {{.*}} : i1 -> tensor<64x32xi1, #[[$BLOCK_0]]>
// CHECK-NEXT: %[[PREFETCH_MASK:.*]] = arith.andi %[[LOOP_MASK]], %[[LOAD_MASK_2D_1]] : tensor<64x32xi1, #blocked>
// CHECK-NEXT: triton_intel_gpu.prefetch %[[VAL_106]], %[[PREFETCH_MASK]] {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
// CHECK: %[[PREFETCH_MASK:.*]] = tt.splat {{.*}} : i1 -> tensor<32x256xi1, #[[$BLOCK_1]]>
// CHECK-NEXT: triton_intel_gpu.prefetch %[[VAL_107]], %[[PREFETCH_MASK]] {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
// CHECK: %[[VAL_116:.*]] = tt.load %[[VAL_96]], {{.*}}, {{.*}} : tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>
// CHECK: %[[VAL_120:.*]] = tt.load %[[VAL_97]], {{.*}}, {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
// CHECK: %[[VAL_120:.*]] = tt.load %[[VAL_97]] {{.*}} : tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
// CHECK: %[[VAL_121:.*]] = ttg.convert_layout %[[VAL_116]] : tensor<64x32xf16, #[[$BLOCK_0]]> -> tensor<64x32xf16, #{{.*}}<{opIdx = 0, parent = #[[$DPAS]], kWidth = 1}>>
// CHECK: %[[VAL_122:.*]] = ttg.convert_layout %[[VAL_120]] : tensor<32x256xf16, #[[$BLOCK_1]]> -> tensor<32x256xf16, #{{.*}}<{opIdx = 1, parent = #[[$DPAS]], kWidth = 2}>>
// CHECK: %[[VAL_123:.*]] = tt.dot %[[VAL_121]], %[[VAL_122]], %[[VAL_93]], inputPrecision = tf32 : tensor<64x32xf16, #{{.*}}<{opIdx = 0, parent = #[[$DPAS]], kWidth = 1}>> * tensor<32x256xf16, #{{.*}}<{opIdx = 1, parent = #[[$DPAS]], kWidth = 2}>> -> tensor<64x256xf32, #[[$DPAS]]>
// CHECK: scf.yield %[[VAL_123]], %[[VAL_106]], %[[VAL_107]], %[[VAL_94]], %[[VAL_95]] : tensor<64x256xf32, #[[$DPAS]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>
// CHECK: scf.yield %[[VAL_123]], %[[VAL_106]], %[[VAL_107]], %[[VAL_94]], %[[ARG_14]], %[[LOAD_MASK_2D_1]], %[[VAL_95]], %[[ARG_17]], %[[VAL_108]] :
// CHECK-SAME: tensor<64x256xf32, #[[$DPAS]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, tensor<64x32x!tt.ptr<f16>, #[[$BLOCK_0]]>, tensor<64x32xi1, #[[$BLOCK_0]]>, tensor<64x32xi1, #[[$BLOCK_0]]>, tensor<32x256x!tt.ptr<f16>, #[[$BLOCK_1]]>, i32, i32
%53:3 = scf.for %arg9 = %c0_i32 to %50 step %c1_i32 iter_args(%arg10 = %cst_2, %arg11 = %38, %arg12 = %48) -> (tensor<64x256xf32, #dpas>, tensor<64x32x!tt.ptr<f16>, #blocked>, tensor<32x256x!tt.ptr<f16>, #blocked1>) : i32 {
%72 = arith.muli %arg9, %c32_i32 : i32
%73 = arith.subi %arg5, %72 : i32
Expand All @@ -108,7 +116,7 @@ module attributes {"ttg.num-warps" = 4 : i32, "ttg.threads-per-warp" = 16 : i32,
%78 = tt.splat %73 : i32 -> tensor<32x1xi32, #blocked1>
%79 = arith.cmpi slt, %40, %78 : tensor<32x1xi32, #blocked1>
%80 = tt.broadcast %79 : tensor<32x1xi1, #blocked1> -> tensor<32x256xi1, #blocked1>
%81 = tt.load %arg12, %80, %cst_1 {triton_intel_gpu.block_io = "row_major"} : tensor<32x256x!tt.ptr<f16>, #blocked1>
%81 = tt.load %arg12 {triton_intel_gpu.block_io = "row_major"} : tensor<32x256x!tt.ptr<f16>, #blocked1>
%82 = ttg.convert_layout %77 : tensor<64x32xf16, #blocked> -> tensor<64x32xf16, #dot0>
%83 = ttg.convert_layout %81 : tensor<32x256xf16, #blocked1> -> tensor<32x256xf16, #dot1>
%84 = tt.dot %82, %83, %arg10, inputPrecision = tf32 : tensor<64x32xf16, #dot0> * tensor<32x256xf16, #dot1> -> tensor<64x256xf32, #dpas>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -89,8 +89,8 @@ static void createPrefetchOp(scf::ForOp &forOp, tt::LoadOp loadOp) {
OpBuilder builder(forOp);
builder.setInsertionPoint(loadOp);
auto prefetchOp = builder.create<ttgi::PrefetchOp>(
loadOp->getLoc(), loadOp.getPtr(), loadOp.getCache(), loadOp.getEvict(),
loadOp.getIsVolatile());
loadOp->getLoc(), loadOp.getPtr(), loadOp.getMask(), loadOp.getCache(),
loadOp.getEvict(), loadOp.getIsVolatile());

// inherit attributes from the load operation
auto attrs = loadOp->getAttrDictionary();
Expand Down