Skip to content

Limit prefetch to only dense memory #4009

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 25, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions test/TritonIntelGPU/loop-pipeline.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -100,11 +100,11 @@ module attributes {"ttg.num-warps" = 4 : i32, "ttg.threads-per-warp" = 16 : i32,
%74 = tt.splat %73 : i32 -> tensor<1x32xi32, #blocked>
%75 = arith.cmpi slt, %33, %74 : tensor<1x32xi32, #blocked>
%76 = tt.broadcast %75 : tensor<1x32xi1, #blocked> -> tensor<64x32xi1, #blocked>
%77 = tt.load %arg11, %76, %cst_0 : tensor<64x32x!tt.ptr<f16>, #blocked>
%77 = tt.load %arg11, %76, %cst_0 {triton_intel_gpu.block_io = "row_major"} : tensor<64x32x!tt.ptr<f16>, #blocked>
%78 = tt.splat %73 : i32 -> tensor<32x1xi32, #blocked1>
%79 = arith.cmpi slt, %40, %78 : tensor<32x1xi32, #blocked1>
%80 = tt.broadcast %79 : tensor<32x1xi1, #blocked1> -> tensor<32x256xi1, #blocked1>
%81 = tt.load %arg12, %80, %cst_1 : tensor<32x256x!tt.ptr<f16>, #blocked1>
%81 = tt.load %arg12, %80, %cst_1 {triton_intel_gpu.block_io = "row_major"} : tensor<32x256x!tt.ptr<f16>, #blocked1>
%82 = ttg.convert_layout %77 : tensor<64x32xf16, #blocked> -> tensor<64x32xf16, #dot0>
%83 = ttg.convert_layout %81 : tensor<32x256xf16, #blocked1> -> tensor<32x256xf16, #dot1>
%84 = tt.dot %82, %83, %arg10, inputPrecision = tf32 : tensor<64x32xf16, #dot0> * tensor<32x256xf16, #dot1> -> tensor<64x256xf32, #dpas>
Expand Down Expand Up @@ -175,8 +175,8 @@ module attributes {"ttg.num-warps" = 32 : i32, "ttg.threads-per-warp" = 16 : i32
// CHECK: tt.dot {{.*}} : tensor<128x64xf16, #ttg.dot_op<{opIdx = 0, parent = #[[$DPAS]], kWidth = 1}>> * tensor<64x256xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$DPAS]], kWidth = 2}>> -> tensor<128x256xf32, #[[$DPAS]]>
// CHECK-NEXT: scf.yield
%23:3 = scf.for %arg9 = %c0_i32 to %arg5 step %c64_i32 iter_args(%arg10 = %cst, %arg11 = %18, %arg12 = %22) -> (tensor<128x256xf32, #dpas>, !tt.ptr<tensor<128x64xf16, #dot0>>, !tt.ptr<tensor<64x256xf16, #dot1>>) : i32 {
%56 = tt.load %arg11 {boundaryCheck = array<i32: 0, 1>} : !tt.ptr<tensor<128x64xf16, #dot0>>
%57 = tt.load %arg12 {boundaryCheck = array<i32: 0, 1>} : !tt.ptr<tensor<64x256xf16, #dot1>>
%56 = tt.load %arg11 {boundaryCheck = array<i32: 0, 1>, triton_intel_gpu.block_io = "row_major"} : !tt.ptr<tensor<128x64xf16, #dot0>>
%57 = tt.load %arg12 {boundaryCheck = array<i32: 0, 1>, triton_intel_gpu.block_io = "row_major"} : !tt.ptr<tensor<64x256xf16, #dot1>>
%58 = tt.dot %56, %57, %arg10, inputPrecision = tf32 : tensor<128x64xf16, #dot0> * tensor<64x256xf16, #dot1> -> tensor<128x256xf32, #dpas>
%59 = tt.advance %arg11, [%c0_i32, %c64_i32] : <tensor<128x64xf16, #ttg.dot_op<{opIdx = 0, parent = #dpas, kWidth = 1}>>>
%60 = tt.advance %arg12, [%c64_i32, %c0_i32] : <tensor<64x256xf16, #ttg.dot_op<{opIdx = 1, parent = #dpas, kWidth = 2}>>>
Expand Down Expand Up @@ -248,8 +248,8 @@ module attributes {"ttg.num-warps" = 32 : i32, "ttg.threads-per-warp" = 16 : i32
// CHECK: tt.dot {{.*}} : tensor<128x64xf16, #ttg.dot_op<{opIdx = 0, parent = #[[$DPAS]], kWidth = 1}>> * tensor<64x256xf16, #ttg.dot_op<{opIdx = 1, parent = #[[$DPAS]], kWidth = 2}>> -> tensor<128x256xf32, #[[$DPAS]]>
// CHECK-NEXT: scf.yield
%23:3 = scf.for %arg9 = %c0_i32 to %arg5 step %c64_i32 iter_args(%arg10 = %cst, %arg11 = %18, %arg12 = %22) -> (tensor<128x256xf32, #dpas>, !tt.ptr<tensor<128x64xf16, #dot0>>, !tt.ptr<tensor<64x256xf16, #dot1>>) : i32 {
%56 = tt.load %arg11 {boundaryCheck = array<i32: 0, 1>} : !tt.ptr<tensor<128x64xf16, #dot0>>
%57 = tt.load %arg12 {boundaryCheck = array<i32: 0, 1>} : !tt.ptr<tensor<64x256xf16, #dot1>>
%56 = tt.load %arg11 {boundaryCheck = array<i32: 0, 1>, triton_intel_gpu.block_io = "row_major"} : !tt.ptr<tensor<128x64xf16, #dot0>>
%57 = tt.load %arg12 {boundaryCheck = array<i32: 0, 1>, triton_intel_gpu.block_io = "row_major"} : !tt.ptr<tensor<64x256xf16, #dot1>>
%58 = tt.dot %56, %57, %arg10, inputPrecision = tf32 : tensor<128x64xf16, #dot0> * tensor<64x256xf16, #dot1> -> tensor<128x256xf32, #dpas>
%102 = tt.addptr %arg8, %c4_i32 : !tt.ptr<i32>, i32
%100 = arith.addi %c0_i32, %c4_i32 : i32
Expand Down
8 changes: 4 additions & 4 deletions test/TritonIntelGPU/split-barrier.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,8 @@ module attributes {"ttg.num-warps" = 32 : i32, "ttg.threads-per-warp" = 16 : i32
// CHECK-NEXT: scf.yield
%23:3 = scf.for %arg2 = %c0_i32 to %c64_i32 step %c64_i32 iter_args(%arg3 = %cst, %arg4 = %18, %arg5 = %22) -> (tensor<128x256xf32, #dpas>, !tt.ptr<tensor<128x64xf16, #dot0>>, !tt.ptr<tensor<64x256xf16, #dot1>>) : i32 {
%55:3 = scf.for %arg9 = %c0_i32 to %c64_i32 step %c64_i32 iter_args(%arg10 = %cst, %arg11 = %18, %arg12 = %22) -> (tensor<128x256xf32, #dpas>, !tt.ptr<tensor<128x64xf16, #dot0>>, !tt.ptr<tensor<64x256xf16, #dot1>>) : i32 {
%56 = tt.load %arg11 {boundaryCheck = array<i32: 0, 1>} : !tt.ptr<tensor<128x64xf16, #dot0>>
%57 = tt.load %arg12 {boundaryCheck = array<i32: 0, 1>} : !tt.ptr<tensor<64x256xf16, #dot1>>
%56 = tt.load %arg11 {boundaryCheck = array<i32: 0, 1>, triton_intel_gpu.block_io = "row_major"} : !tt.ptr<tensor<128x64xf16, #dot0>>
%57 = tt.load %arg12 {boundaryCheck = array<i32: 0, 1>, triton_intel_gpu.block_io = "row_major"} : !tt.ptr<tensor<64x256xf16, #dot1>>
%58 = tt.dot %56, %57, %arg10, inputPrecision = tf32 : tensor<128x64xf16, #dot0> * tensor<64x256xf16, #dot1> -> tensor<128x256xf32, #dpas>
%59 = tt.advance %arg11, [%c0_i32, %c64_i32] : <tensor<128x64xf16, #ttg.dot_op<{opIdx = 0, parent = #dpas, kWidth = 1}>>>
%60 = tt.advance %arg12, [%c64_i32, %c0_i32] : <tensor<64x256xf16, #ttg.dot_op<{opIdx = 1, parent = #dpas, kWidth = 2}>>>
Expand Down Expand Up @@ -79,8 +79,8 @@ module attributes {"ttg.num-warps" = 32 : i32, "ttg.threads-per-warp" = 16 : i32
// SUBGROUP_SCOPE: spirv.INTEL.ControlBarrierWait <Subgroup> <Subgroup> <None>
// CHECK-NEXT: scf.yield
%23:3 = scf.for %arg9 = %c0_i32 to %c64_i32 step %c64_i32 iter_args(%arg10 = %cst, %arg11 = %18, %arg12 = %22) -> (tensor<128x256xf32, #dpas>, !tt.ptr<tensor<128x64xf16, #dot0>>, !tt.ptr<tensor<64x256xf16, #dot1>>) : i32 {
%56 = tt.load %arg11 {boundaryCheck = array<i32: 0, 1>} : !tt.ptr<tensor<128x64xf16, #dot0>>
%57 = tt.load %arg12 {boundaryCheck = array<i32: 0, 1>} : !tt.ptr<tensor<64x256xf16, #dot1>>
%56 = tt.load %arg11 {boundaryCheck = array<i32: 0, 1>, triton_intel_gpu.block_io = "row_major"} : !tt.ptr<tensor<128x64xf16, #dot0>>
%57 = tt.load %arg12 {boundaryCheck = array<i32: 0, 1>, triton_intel_gpu.block_io = "row_major"} : !tt.ptr<tensor<64x256xf16, #dot1>>
%58 = tt.dot %56, %57, %arg10, inputPrecision = tf32 : tensor<128x64xf16, #dot0> * tensor<64x256xf16, #dot1> -> tensor<128x256xf32, #dpas>
%59 = tt.advance %arg11, [%c0_i32, %c64_i32] : <tensor<128x64xf16, #ttg.dot_op<{opIdx = 0, parent = #dpas, kWidth = 1}>>>
%60 = tt.advance %arg12, [%c64_i32, %c0_i32] : <tensor<64x256xf16, #ttg.dot_op<{opIdx = 1, parent = #dpas, kWidth = 2}>>>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,16 @@ static void collectOpsToPipeline(scf::ForOp forOp,
if (!isBlockPtr && !supportRegularPtr)
continue;

// Check if the memory is structed densely. If not, we do not prefetch it
// to avoid polluting the cache.
Attribute blockIOAttr =
loadOp->getAttr(mlir::triton::gpu::intel::TritonIntelGPUDialect::
getBlockIOAttrName());
if (!blockIOAttr) {
LDBG("Skipping LoadOp without block_io attribute" << *loadOp);
continue;
}

std::optional<LoadDotOperand> loadWithDotOperand = loadDotOperand(loadOp);
if (loadWithDotOperand.has_value())
loadOps.push_back(loadWithDotOperand.value());
Expand Down