Skip to content

ilsvrc2012 ImageNet Top-1, Top-5 Accuracy Benchmarking on 10K Validation Images

Notifications You must be signed in to change notification settings

ghimiredhikura/ImageNet-Evaluation-RaspberryPi3-4

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ILSVRC2012 ImageNet Accuracy Benchmarking on 10K Validataion Images

ILSVRC2012 ImageNet 10K Validataion Images and devkit for Top-1 & Top-5 Accuracy Benchmarking in Edge Devices [example: RPi3/4]

git clone https://github.com/ghimiredhikura/ILSVRC2012_img_val_10K
cd ILSVRC2012_img_val_10K/data/
unzip mobilenet_v2_imagenet.zip
rm -rf mobilenet_v2_imagenet.zip
mv mobilenet_v2_imagenet.txt ../mobilenet_v2_imagenet.txt
cd ../

Download ILSVRC2012 validataion images - 10K images and use your inference engine to get dump file. Example: inference script, reference models running scipt.

chmod +x scripts/download_ILSVRC2012_img_val_10K.sh
./scripts/download_ILSVRC2012_img_val_10K.sh

Now use your prediction dump file generated using your favorite inference engine to get top-1 and top-5 accuracies. Here we provide an example imagenet dump file on 10K images using opencv-4.1.1 dnn classification engine with mobilenetv2 caffe model. Once you have this dump file you can use following command to get top-1 and top-5 accuracies.

source run_nvisoeval.sh mobilenet_v2_imagenet.txt

Results

Inference Engine Model Valid Images RaspberryPi4B-armv7l RaspberryPi4B-armv7l RaspberryPi4B-aarch64 RaspberryPi4B-aarch64 Issue Discussion
Top-1 Accuracy Top-5 Accuracy Top-1 Accuracy Top-5 Accuracy
opencv_4.1.1 Mobilenet_V2_1.0_224_caffe 10K 62.32% 84.04% click
tflite_2.0.0 Mobilenet_V2_1.0_224_tflitehm 10K 71.06% 90.10%

About

ilsvrc2012 ImageNet Top-1, Top-5 Accuracy Benchmarking on 10K Validation Images

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published