Skip to content

Latest commit

 

History

History
33 lines (26 loc) · 2.39 KB

File metadata and controls

33 lines (26 loc) · 2.39 KB

ILSVRC2012 ImageNet Accuracy Benchmarking on 10K Validataion Images

ILSVRC2012 ImageNet 10K Validataion Images and devkit for Top-1 & Top-5 Accuracy Benchmarking in Edge Devices [example: RPi3/4]

git clone https://github.com/ghimiredhikura/ILSVRC2012_img_val_10K
cd ILSVRC2012_img_val_10K/data/
unzip mobilenet_v2_imagenet.zip
rm -rf mobilenet_v2_imagenet.zip
mv mobilenet_v2_imagenet.txt ../mobilenet_v2_imagenet.txt
cd ../

Download ILSVRC2012 validataion images - 10K images and use your inference engine to get dump file. Example: inference script, reference models running scipt.

chmod +x scripts/download_ILSVRC2012_img_val_10K.sh
./scripts/download_ILSVRC2012_img_val_10K.sh

Now use your prediction dump file generated using your favorite inference engine to get top-1 and top-5 accuracies. Here we provide an example imagenet dump file on 10K images using opencv-4.1.1 dnn classification engine with mobilenetv2 caffe model. Once you have this dump file you can use following command to get top-1 and top-5 accuracies.

source run_nvisoeval.sh mobilenet_v2_imagenet.txt

Results

Inference Engine Model Valid Images RaspberryPi4B-armv7l RaspberryPi4B-armv7l RaspberryPi4B-aarch64 RaspberryPi4B-aarch64 Issue Discussion
Top-1 Accuracy Top-5 Accuracy Top-1 Accuracy Top-5 Accuracy
opencv_4.1.1 Mobilenet_V2_1.0_224_caffe 10K 62.32% 84.04% click
tflite_2.0.0 Mobilenet_V2_1.0_224_tflitehm 10K 71.06% 90.10%