Skip to content

duyguislakoglu/julia_graph_convolutional_networks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The Julia/Knet implementation of Semi-supervised Classification With Graph Convolutional Networks [1].

Usage

julia train.jl

Parameters

  --dataset: The name of the dataset
  --model: The name of the model: gcn, gcn_cheby or dense
  --epochs: Number of epochs to train
  --lr: Initial learning rate
  --weight_decay: Weight for L2 loss on embedding matrix
  --hidden: Number of units in hidden layer
  --pdrop: Dropout rate (1 - keep probability) 
  --window_size: Tolerance for early stopping (# of epochs)
  --load_file: The path to load a saved model
  --num_of_runs: The number of randomly initialized runs 
  --save_epoch_num: The number of epochs to save the model 
  --chebyshev_max_degree: Maximum Chebyshev polynomial degree 

Colab

Colab link

Original Code

https://github.com/tkipf/gcn

https://github.com/tkipf/pygcn

Datasets

1- Citeseer

2- Cora

3- Pubmed

4- NELL

https://github.com/kimiyoung/planetoid

References

[1] Thomas N. Kipf, Max Welling. 2017, Semi-supervised Classification With Graph Convolutional Networks, In International Conference on Learning Representations (ICLR)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages