The Julia/Knet implementation of Semi-supervised Classification With Graph Convolutional Networks [1].
julia train.jl
--dataset: The name of the dataset
--model: The name of the model: gcn, gcn_cheby or dense
--epochs: Number of epochs to train
--lr: Initial learning rate
--weight_decay: Weight for L2 loss on embedding matrix
--hidden: Number of units in hidden layer
--pdrop: Dropout rate (1 - keep probability)
--window_size: Tolerance for early stopping (# of epochs)
--load_file: The path to load a saved model
--num_of_runs: The number of randomly initialized runs
--save_epoch_num: The number of epochs to save the model
--chebyshev_max_degree: Maximum Chebyshev polynomial degree
https://github.com/tkipf/pygcn
1- Citeseer
2- Cora
3- Pubmed
4- NELL
https://github.com/kimiyoung/planetoid
[1] Thomas N. Kipf, Max Welling. 2017, Semi-supervised Classification With Graph Convolutional Networks, In International Conference on Learning Representations (ICLR)