- Linux
- Python 3
- Nvidia GPU + CUDA cuDNN
- Pytorch >= 0.4
- opencv-python
- numpy
- Install PyTorch and other dependencies
pip install -r requirements.txt
- Clone this repo:
git clone https://github.com/YinengXiong/SeisInterp.git
cd SeisInterp
Download dataset and place it in ./SeisInterp/Data/
The dataset has 96 train, 12 validation and 12 testing shot record, respectively.
Each shot record has the size of 500 X 6001
(500 traces with 10m interval, 6001 time sampling points with 0.5 ms)
Google Drive | Baidu Downloads Code: q97i
For example, if you want to train an interpolation model which needs pre-interpolation and only interpolate on X- direction at the scale of 4
python train.py --gpu 0 --dataroot ./Data/MarmousiP20HzAGC500/ --num_traces 500 --nComp 1 --prefix shotp --scale 4 --diretion 0 --arch vdsr
If you use this code for your research, please cite our papers.
@inproceedings{xiong2019efficient,
title={Efficient Seismic Data Interpolation Using Deep Convolutional Networks and Transfer Learning},
author={Xiong, Y and Cheng, J},
booktitle={81st EAGE Conference and Exhibition 2019},
volume={2019},
number={1},
pages={1--5},
year={2019},
organization={European Association of Geoscientists \& Engineers}
}