-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
302 lines (236 loc) · 9.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import time
import shutil
import logging
import importlib
import numpy as np
import cv2
import torch
import torch.nn as nn
from torch.autograd import Variable
from options.train_options import TrainOptions
from utils import *
def train_model(train_data_loader, model, criterion, optimizer, epoch,
eval_score=None, args=None):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
scores = AverageMeter()
model.train()
start = time.time()
hist = 0.
count = 0.
for i, (hr, lr) in enumerate(train_data_loader):
data_time.update(time.time() - start)
hr = Variable(hr.cuda())
lr = Variable(lr.cuda())
output = model(lr)
loss = criterion(output, hr)
losses.update(loss.data.item(), hr.size(0))
for index in range(hr.size(0)):
pred = output[index, :, :, :].cpu().data.numpy()
label = hr[index, :, :, :].cpu().data.numpy()
hist += SNR(pred, label)
count += 1
if eval_score is not None:
scores.update(eval_score(output, hr), hr.size(0))
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
batch_time.update(time.time() - start)
start = time.time()
if i % args.print_freq == 0:
logger.info('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Score {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_data_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=scores
))
logger.info(hist / count * 1.)
def validate(model, criterion, eval_score=None, args=None):
batch_time = AverageMeter()
score = AverageMeter()
model.eval()
start = time.time()
val_dir = os.path.join(args.dataroot, 'Val')
vallists_ = sorted(os.listdir(val_dir))
vallists = []
for v in vallists_:
if args.prefix[0] in v:
vallists.append(v)
valSNR = 0.
valCount = len(vallists)
for i, ff in enumerate(vallists):
if args.nComp == 1:
datafile = os.path.join(val_dir, ff)
hr = np.fromfile(datafile, 'float32')
hr.shape = (-1, args.num_traces)
hr = hr[::args.tscale, :]
hr = np.expand_dims(hr, axis=2)
else:
for icomp in range(args.nComp):
if icomp == 0:
datafile = os.path.join(val_dir, ff)
else:
datafile = os.path.join(val_dir, ff.replace(
args.prefix[icomp-1], args.prefix[icomp]))
hr_ = np.fromfile(datafile, 'float32')
hr_.shape = (-1, args.num_traces)
hr_ = hr_[::args.tscale, :]
if icomp == 0:
hr = np.zeros((hr_.shape[0], hr_.shape[1], args.nComp), 'float32')
hr[:, :, icomp] = hr_
if args.scale == 0:
ss = 4
else:
ss = args.scale
# Subsample
if args.direction == 0:
if args.arch != 'vdsr':
hr = hr[:, :hr.shape[1]//ss*ss]
lr = cv2.resize(hr, (hr.shape[1] // ss, hr.shape[0]), cv2.INTER_CUBIC)
elif args.direction == 1:
if args.arch != 'vdsr':
hr = hr[:hr.shape[0]//ss*ss, :]
lr = cv2.resize(hr, (hr.shape[1], hr.shape[0] // ss), cv2.INTER_CUBIC)
else:
if args.arch != 'vdsr':
hr = hr[:hr.shape[0]//ss*ss, :hr.shape[1]//ss*ss]
lr = cv2.resize(hr, (hr.shape[1] // ss, hr.shape[0] // ss), cv2.INTER_CUBIC)
# only vdsr needs pre-interpolation
if args.arch == 'vdsr':
lr = cv2.resize(lr, (hr.shape[1], hr.shape[0]), cv2.INTER_CUBIC)
if args.nComp == 1:
lr = np.expand_dims(lr, axis=2)
hr = np.transpose(hr, (2, 0, 1))
lr = np.transpose(lr, (2, 0, 1))
#hr = torch.from_numpy(hr.copy()).float().cuda().unsqueeze(0)
lr = torch.from_numpy(lr.copy()).float().cuda().unsqueeze(0)
# Forward
with torch.no_grad():
sr = model(lr)
sr = sr.squeeze(0).detach().cpu().numpy()
# Evaluate performance
if eval_score is not None:
score.update(eval_score(sr, hr), 1)
# Update time
batch_time.update(time.time() - start)
start = time.time()
valSNR += SNR(sr, hr)
if i % args.print_freq == 0:
logger.info('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Score {score.val:.3f} ({score.avg:.3f})'.format(
i, len(vallists), batch_time=batch_time, score=score
))
finalscore = valSNR / valCount
logger.info(finalscore)
return score.avg
def save_checkpoint(args, state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copy(filename, os.path.join(args.checkpath, 'model_best.pth.tar'))
#######################################
# Start #
#######################################
# Parse Options
args = TrainOptions().parse()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
# Generate Checkpoints Path
checkpath = os.path.join(args.checkpoints_dir, '{0}_{1}_bs{2}_ps{3}_b{4}_f{5}_{6}_lr{7}_mode{8}_loss{9}'.format(
time.strftime("%m-%d_%H:%M", time.localtime()), args.arch,
args.batchSize, args.patchSize, args.num_blocks, args.num_features,
'res'+str(args.res_scale) if args.residual else 'nores', args.lr, args.lr_mode, args.loss)
)
if not os.path.exists(checkpath):
os.makedirs(checkpath)
args.checkpath = checkpath
# Generate Log
FORMAT = "[%(asctime)-15s %(filename)s:%(lineno)d %(funcName)s] %(message)s"
logging.basicConfig(format=FORMAT, filemode='a')
logger=logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(os.path.join(checkpath, 'train.log'))
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)
for k, v in args.__dict__.items():
logger.info('{}:{}'.format(k, v))
# Prepare Dataset
print('Creating Dataset...')
if args.arch == 'vdsr':
# need preinterp
from data.preinterp_dataset import PreInterpDataset
dataset = PreInterpDataset(args, phase='Train')
else:
# directly upsample
from data.dataset import InterpDataset
dataset = InterpDataset(args, phase='Train')
train_data_loader = torch.utils.data.DataLoader(
dataset=dataset, num_workers=args.nThreads, batch_size=args.batchSize, shuffle=True,
pin_memory=True, drop_last=False
)
# Create Model
print('Creating Model...')
start_time = time.time()
model = importlib.import_module("model.{}".format(args.arch)).Model(args)
#import vdsr
#model = vdsr.VDSR(args.num_blocks, args.residual)
logger.info(model)
# Use GPUs
print('Found', torch.cuda.device_count(), 'GPUs')
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
model = model.cuda()
# Load pretrained model
if args.pretrained:
if os.path.isfile(args.pretrained):
print('=> loading pretrained "{}"'.format(args.pretrained))
checkpoint = torch.load(args.pretrained)
model.load_state_dict(checkpoint['state_dict'])
else:
print('=> no checkpoint found at "{}"'.format(args.pretrained))
# Define Loss Function
if args.loss == 'l2':
criterion = nn.MSELoss()
elif args.loss == 'l1':
criterion = nn.L1Loss()
criterion.cuda()
print('After parallel object, the time is {:.3f} s'.format(time.time() - start_time))
# Define Optimizer
if args.optimizer == 'adam':
print('Using Adam Optimizer')
optimizer = torch.optim.Adam(model.parameters(), args.lr, betas=(0.9, 0.999), amsgrad=True)
else:
print('Using SGD with momentum(0.9)')
optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=0.9, weight_decay=1e-4)
best_prec = 0.
start_epoch = 0
# Start Training
print('Start Training')
print('*' * 50)
for epoch in range(start_epoch, args.nEpochs):
# Adjust learning rate
lr = adjust_learning_rate(args, optimizer, epoch)
logger.info('Epoch: [{0}]\tlr {1:.06f}'.format(epoch, lr))
# Train Process
train_model(train_data_loader, model, criterion, optimizer, epoch,
accuracy, args)
# Validate and Save Checkpoint
if (epoch + 1) % args.val_freq == 0:
prec = validate(model, criterion, SNR, args)
is_best = prec > best_prec
best_prec = max(best_prec, prec)
ckpt_path = os.path.join(args.checkpath, 'checkpoint_latesest.pth.tar')
save_checkpoint(args, {
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.module.state_dict() if torch.cuda.device_count() > 1 else model.state_dict(),
'best_prec': best_prec
}, is_best, filename=ckpt_path)
history_path = os.path.join(args.checkpath, 'checkpoint_{:03d}.pth.tar'.format(epoch+1))
shutil.copyfile(ckpt_path, history_path)
logger.info('Done !')
logger.info('Best SNR: {prec:.6f}'.format(prec=best_prec))