Skip to content

compute surface wave dispersion curves in python using Herrmann's codes

Notifications You must be signed in to change notification settings

yuminzhao91/srfpython

 
 

Repository files navigation

srfpython

  • programs for surface wave dispersion curves in python
  • compute, display, invert 1D depth models
  • based on Herrmann codes Computer Program in seismology

if you use this program, reference would be greatly appreciated
how to cite :

Lehujeur, M., Vergne, J., Schmittbuhl, J., Zigone, D., Le Chenadec, A., & EstOF Team (2018). Reservoir imaging using ambient noise correlation from a dense seismic network. Journal of Geophysical Research: Solid Earth, 123. https://doi.org/10.1029/2018JB015440

install

move to the installation path (e.g. "~/git") and get srfpython

cd ~/git
git clone http://github.com/obsmax/srfpython.git

create the virtual environment and activate it

conda create -n srfpython python=2.7
conda activate srfpython
# source activate srfpython # on old versions of anaconda

move to the repository, install the requirements and install the package

cd ~/git/srfpython
conda install --yes --file requirements.txt
pip install -e .

compile fortran codes

cd ~/git/srfpython/srfpython/Herrmann/src90
./clean.sh 
./compile.sh

test fortran codes using

python ~/git/srfpython/srfpython/Herrmann/Herrmann.py

add the bin directory to the path (recommended)

custom the following line and add it to your .bashrc or .bash_path (linux) or .profile (mac)

export PATH=$PATH:"~/git/srfpython/srfpython/bin"

if you plan to use jupyter notebooks with python2 (optional)

make sure the environment is activated

source activate srfpython

install with

conda install --yes notebook ipykernel
ipython kernel install --user

try the tutorials

cd ~/git/srfpython/tutorials/tutorial0
jupyter notebook 

About

compute surface wave dispersion curves in python using Herrmann's codes

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 72.3%
  • Python 22.6%
  • Fortran 4.4%
  • Shell 0.7%