A Snakemake-based automated workflow for generating high-confidence structural variant (SV) call sets, powered by OctopusV. TentacleSV streamlines multi-caller SV analysis by integrating state-of-the-art callers with OctopusV's advanced BND correction and flexible merging capabilities.
- Universal Input Support: Process both FASTQ files and pre-aligned BAM files
- Multi-platform Analysis: Comprehensive support for short-read and long-read sequencing data
- Automated Pipeline: From raw sequencing data to high-confidence SV call sets
- Powered by OctopusV: Advanced BND correction and flexible merging strategies
Short-read Callers:
- Manta
- Delly
- Lumpy
- SVaba
Long-read Callers:
- CuteSV
- PBSV
- Sniffles2
- SVIM
- Debreak
- SVDSS
# Clone the repository
git clone https://github.com/yourusername/TentacleSV.git
cd TentacleSV
# Create conda environment
mamba env create -f environment.yaml
conda activate tentaclesv
- Configure Your Analysis
Edit config/config.yaml
to specify your input data and parameters:
# For short-read data
seq_type: "short"
samples:
sample1:
type: "fastq"
fq1: "path/to/R1.fastq.gz"
fq2: "path/to/R2.fastq.gz"
# For long-read data
seq_type: "long_pacbio" # or "long_ont"
samples:
sample1:
type: "fastq"
fq1: "path/to/reads.fastq.gz"
- Run the Pipeline
snakemake --cores 8 \
--use-conda \
--use-singularity \
--singularity-args "--bind /projects,/home" \
--conda-frontend mamba \
--rerun-incomplete \
--keep-going \
-s workflow/Snakefile
TentacleSV generates:
- High-confidence SV call set (
results/merged/{sample}.vcf
) - Quality metrics and logs
- Optional UpSet plots showing caller overlap
If you use OctopusV or TentacleSV, please cite:
Guo Q, Li Y, Wang T, Ramakrishnan A, Yang R. OctopusV and TentacleSV: a one-stop toolkit for multi-sample, cross-platform structural variant comparison and analysis. bioRxiv. 2025. doi: 10.1101/2025.03.24.645012
@article{guo2025octopusv,
title={OctopusV and TentacleSV: a one-stop toolkit for multi-sample, cross-platform structural variant comparison and analysis},
author={Guo, Qingxiang and Li, Yangyang and Wang, Tingyou and Ramakrishnan, Abhi and Yang, Rendong},
journal={bioRxiv},
year={2025},
publisher={Cold Spring Harbor Laboratory},
doi={10.1101/2025.03.24.645012},
url={https://www.biorxiv.org/content/10.1101/2025.03.24.645012v1}
}
This project is licensed under the MIT License - see the LICENSE file for details.
Contributions are welcome! Please feel free to submit a Pull Request.