Skip to content

exploratory data analysis #1738

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: develop
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 72 additions & 0 deletions exploratory data analysis
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Step 1: Load the dataset
# For example, using a CSV file
data = pd.read_csv('your_dataset.csv')

# Step 2: Basic information about the data
print("Data Overview:")
print(data.info()) # Check basic info like number of rows, columns, and data types
print("\nMissing Values:")
print(data.isnull().sum()) # Check for missing values

# Step 3: Statistical summary of the data
print("\nStatistical Summary:")
print(data.describe()) # Summary statistics like mean, std, min, max, etc.

# Step 4: Checking correlations between numerical features
print("\nCorrelation Matrix:")
correlation_matrix = data.corr()
print(correlation_matrix)

# Step 5: Visualize the correlations with a heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
plt.title('Correlation Heatmap')
plt.show()

# Step 6: Visualize the distribution of numerical variables
data.hist(figsize=(10, 8), bins=20)
plt.suptitle('Histograms of Numerical Features')
plt.show()

# Step 7: Boxplot to check for outliers
plt.figure(figsize=(10, 8))
sns.boxplot(data=data)
plt.title('Boxplot of Numerical Features')
plt.xticks(rotation=90) # Rotate x-axis labels for better readability
plt.show()

# Step 8: Check for categorical variables
categorical_cols = data.select_dtypes(include=['object']).columns
print("\nCategorical Variables Summary:")
for col in categorical_cols:
print(f"\n{col} value counts:")
print(data[col].value_counts())

# Step 9: Visualize categorical data using count plots
plt.figure(figsize=(10, 8))
for i, col in enumerate(categorical_cols, 1):
plt.subplot(2, 3, i) # Change the grid size based on number of categorical columns
sns.countplot(x=col, data=data)
plt.title(f'Countplot of {col}')
plt.tight_layout()
plt.show()

# Step 10: Identifying and handling missing values (if any)
# You can drop or impute missing values based on your strategy
data_cleaned = data.dropna() # Drop rows with missing values
# Alternatively, you can fill missing values using the mean, median, mode, or other techniques
# data['column_name'].fillna(data['column_name'].mean(), inplace=True)

# Step 11: Feature Engineering (if applicable)
# Create new features or transform existing ones based on your analysis
# For example, creating a new 'AgeGroup' column based on an 'Age' column
# data['AgeGroup'] = pd.cut(data['Age'], bins=[0, 18, 30, 50, 100], labels=['Child', 'Young Adult', 'Adult', 'Senior'])

# Final Step: Save the cleaned data to a new CSV if needed
# data_cleaned.to_csv('cleaned_data.csv', index=False)