Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
wzy6642 authored Dec 28, 2018
1 parent dc04cc0 commit 65126ad
Show file tree
Hide file tree
Showing 3 changed files with 584 additions and 0 deletions.
218 changes: 218 additions & 0 deletions AdaBoost_Project2/AdaBoost.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 26 20:14:03 2018
@author: wzy
"""
import numpy as np
import matplotlib.pyplot as plt

"""
函数说明:加载文件
Parameters:
fileName - 文件名
Returns:
dataMat - 数据矩阵
labelMat - 数据标签
Modify:
2018-07-26
"""
def loadDataSet(fileName):
# 特征个数
numFeat = len((open(fileName).readline().split('\t')))
dataMat = []
labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr = []
curLine = line.strip().split('\t')
for i in range(numFeat - 1):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat, labelMat


"""
函数说明:单层决策树分类函数
Parameters:
dataMatrix - 数据矩阵
dimen - 第dimen列,也就是第几个特征
threshVal - 阈值
threshIneq - 标志
Returns:
retArray - 分类结果
Modify:
2018-07-26
"""
def stumpClassify(dataMatrix, dimen, threshVal, threshIneq):
# 初始化retArray为全1列向量
retArray = np.ones((np.shape(dataMatrix)[0], 1))
if threshIneq == 'lt':
# 如果小于阈值则赋值为-1
retArray[dataMatrix[:, dimen] <= threshVal] = -1.0
else:
# 如果大于阈值则赋值为-1
retArray[dataMatrix[:, dimen] > threshVal] = -1.0
return retArray


"""
函数说明:找到数据集上最佳的单层决策树
Parameters:
dataArr - 数据矩阵
classLabels - 数据标签
D - 样本权重,每个样本权重相等 1/n
Returns:
bestStump - 最佳单层决策树信息
minError - 最小误差
bestClassEst - 最佳的分类结果
Modify:
2018-07-26
"""
def buildStump(dataArr, classLabels, D):
# 输入数据转为矩阵(5, 2)
dataMatrix = np.mat(dataArr)
# 将标签矩阵进行转置(5, 1)
labelMat = np.mat(classLabels).T
# m=5, n=2
m, n = np.shape(dataMatrix)
numSteps = 10.0
bestStump = {}
# (5, 1)全零列矩阵
bestClasEst = np.mat(np.zeros((m, 1)))
# 最小误差初始化为正无穷大inf
minError = float('inf')
# 遍历所有特征
for i in range(n):
# 找到(每列)特征中的最小值和最大值
rangeMin = dataMatrix[:, i].min()
rangeMax = dataMatrix[:, i].max()
# 计算步长
stepSize = (rangeMax - rangeMin) / numSteps
for j in range(-1, int(numSteps) + 1):
# 大于和小于的情况均遍历,lt:Less than gt:greater than
for inequal in ['lt', 'gt']:
# 计算阈值
threshVal = (rangeMin + float(j) * stepSize)
# 计算分类结果
predictedVals = stumpClassify(dataMatrix, i, threshVal, inequal)
# 初始化误差矩阵
errArr = np.mat(np.ones((m, 1)))
# 分类正确的,赋值为0
errArr[predictedVals == labelMat] = 0
# 计算误差
weightedError = D.T * errArr
print("split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError))
# 找到误差最小的分类方式
if weightedError < minError:
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump, minError, bestClasEst


"""
函数说明:使用AdaBoost进行优化
Parameters:
dataArr - 数据矩阵
classLabels - 数据标签
numIt - 最大迭代次数
Returns:
weakClassArr - 存储单层决策树的list
aggClassEsc - 训练的label
Modify:
2018-07-26
"""
def adaBoostTrainDS(dataArr, classLabels, numIt=60):
weakClassArr = []
# 获取数据集的行数
m = np.shape(dataArr)[0]
# 样本权重,每个样本权重相等,即1/n
D = np.mat(np.ones((m, 1)) / m)
# 初始化为全零列
aggClassEst = np.mat(np.zeros((m, 1)))
# 迭代
for i in range(numIt):
# 构建单层决策树
bestStump, error, classEst = buildStump(dataArr, classLabels, D)
# print("D:", D.T)
# 计算弱学习算法权重alpha,使error不等于0,因为分母不能为0
alpha = float(0.5 * np.log((1.0 - error) / max(error, 1e-16)))
# 存储弱学习算法权重
bestStump['alpha'] = alpha
# 存储单层决策树
weakClassArr.append(bestStump)
# 打印最佳分类结果
# print("classEst: ", classEst.T)
# 计算e的指数项
expon = np.multiply(-1 * alpha * np.mat(classLabels).T, classEst)
# 计算递推公式的分子
D = np.multiply(D, np.exp(expon))
# 根据样本权重公式,更新样本权重
D = D / D.sum()
# 计算AdaBoost误差,当误差为0的时候,退出循环
# 以下为错误率累计计算
aggClassEst += alpha * classEst
# print("aggClassEst: ", aggClassEst.T)
# 计算误差
aggErrors = np.multiply(np.sign(aggClassEst) != np.mat(classLabels).T, np.ones((m, 1)))
errorRate = aggErrors.sum() / m
# print("total error:", errorRate)
if errorRate == 0.0:
# 误差为0退出循环
break
return weakClassArr, aggClassEst


"""
函数说明:AdaBoost分类函数
Parameters:
datToClass - 待分类样例
classifierArr - 训练好的分类器
Returns:
分类结果
Modify:
2018-07-26
"""
def adaClassify(datToClass, classifierArr):
dataMatrix = np.mat(datToClass)
m = np.shape(dataMatrix)[0]
aggClassEst = np.mat(np.zeros((m, 1)))
for i in range(len(classifierArr)):
# 遍历所有分类器进行分类
classEst = stumpClassify(dataMatrix, classifierArr[i]['dim'], classifierArr[i]['thresh'], classifierArr[i]['ineq'])
aggClassEst += classifierArr[i]['alpha'] * classEst
# print(aggClassEst)
return np.sign(aggClassEst)


if __name__ == '__main__':
dataArr, LabelArr = loadDataSet('horseColicTraining2.txt')
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, LabelArr)
testArr, testLabelArr = loadDataSet('horseColicTest2.txt')
print(weakClassArr)
predictions = adaClassify(dataArr, weakClassArr)
errArr = np.mat(np.ones((len(dataArr), 1)))
print('训练集的错误率:%.3f%%' % float(errArr[predictions != np.mat(LabelArr).T].sum() / len(dataArr) * 100))
predictions = adaClassify(testArr, weakClassArr)
errArr = np.mat(np.ones((len(testArr), 1)))
print('测试集的错误率:%.3f%%' % float(errArr[predictions != np.mat(testLabelArr).T].sum() / len(testArr) * 100))

Loading

0 comments on commit 65126ad

Please sign in to comment.