-
Notifications
You must be signed in to change notification settings - Fork 313
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a volume rendering sample with 3D textures (#407)
* Add a volume rendering sample with 3D textures
- Loading branch information
1 parent
1371571
commit 67eec2d
Showing
9 changed files
with
444 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
slices/ | ||
t1_icbm_normal_1mm_pn0_rf0_180x216x180_uint8_1x1.bin | ||
t1_icbm_normal_1mm_pn0_rf0.npy | ||
t1_icbm_normal_1mm_pn0_rf0.rawb |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
:toc: | ||
|
||
== Data from BrainWeb: Simulated Brain Database | ||
|
||
In the "Volume Rendering - Texture 3D" sample, the implementation uses simulated brain data from BrainWeb. The render results, as seen in the sample, were validated to be representative of standard visualization with VTK. | ||
|
||
=== Reproduction | ||
|
||
1. Go to https://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html | ||
2. Set modality to T1. | ||
3. Set slice thickness to 1mm. | ||
4. Set noise to 0%. | ||
5. Set RF to 0%. | ||
6. Click Download. | ||
7. Set file format to raw byte. | ||
8. Set compression to none. | ||
9. Follow other instructions on the website according to your situation. | ||
10. Click Start Download. | ||
11. Copy the downloaded *.rawb data to this directory. | ||
12. Activate a Python environment with at least Python 3.12, Numpy, Scipy, and Pillow. | ||
13. Start a terminal in this directory. | ||
14. Run t1_icbm_normal_1mm_pn0_rf0.py script. | ||
|
||
=== References | ||
|
||
* http://www.bic.mni.mcgill.ca/brainweb/[`http://www.bic.mni.mcgill.ca/brainweb/`] | ||
|
||
* C.A. Cocosco, V. Kollokian, R.K.-S. Kwan, A.C. Evans : | ||
__"BrainWeb: Online Interface to a 3D MRI Simulated Brain Database"__ + | ||
NeuroImage, vol.5, no.4, part 2/4, S425, 1997 -- Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain, Copenhagen, May 1997. | ||
** abstract available in | ||
http://www.bic.mni.mcgill.ca/users/crisco/HBM97_abs/HBM97_abs.html[html], | ||
http://www.bic.mni.mcgill.ca/users/crisco/HBM97_abs/HBM97_abs.pdf[pdf (500Kb)], | ||
or http://www.bic.mni.mcgill.ca/users/crisco/HBM97_abs/HBM97_abs.ps.gz[gnuzip-ed postscript (500Kb)]. | ||
** poster available in | ||
http://www.bic.mni.mcgill.ca/users/crisco/HBM97_poster/HBM97_poster.pdf[pdf (1.1Mb)], | ||
or http://www.bic.mni.mcgill.ca/users/crisco/HBM97_poster/HBM97_poster.ps.gz[gnuzip-ed postscript (850Kb)]. | ||
|
||
* R.K.-S. Kwan, A.C. Evans, G.B. Pike : | ||
__"MRI simulation-based evaluation of image-processing and classification methods"__ + | ||
IEEE Transactions on Medical Imaging. 18(11):1085-97, Nov 1999. | ||
|
||
* R.K.-S. Kwan, A.C. Evans, G.B. Pike : | ||
__"An Extensible MRI Simulator for Post-Processing Evaluation"__ + | ||
Visualization in Biomedical Computing (VBC'96). Lecture Notes in Computer Science, vol. 1131. Springer-Verlag, 1996. 135-140. | ||
** paper available in | ||
http://www.bic.mni.mcgill.ca/users/rkwan/vbc96/paper/vbc96.html[html], | ||
http://www.bic.mni.mcgill.ca/users/rkwan/vbc96/paper/vbc96.ps[postscript (1Mb)], | ||
or http://www.bic.mni.mcgill.ca/users/rkwan/vbc96/paper/vbc96.ps.gz[gnuzip-ed postscript (380Kb)]. | ||
** poster available in | ||
http://www.bic.mni.mcgill.ca/users/rkwan/vbc96/poster/vbc96bw.ps[grey-scale postscript (5.3Mb)], | ||
http://www.bic.mni.mcgill.ca/users/rkwan/vbc96/poster/vbc96bw.ps.gz[grey-scale, gnuzip-ed postscript (536Kb)], | ||
or http://www.bic.mni.mcgill.ca/users/rkwan/vbc96/poster/vbc96.poster.ps.gz[colour, gnuzip-ed postscript (597Kb)]. | ||
|
||
* D.L. Collins, A.P. Zijdenbos, V. Kollokian, J.G. Sled, N.J. Kabani, C.J. Holmes, A.C. Evans : | ||
__"Design and Construction of a Realistic Digital Brain Phantom"__ + | ||
IEEE Transactions on Medical Imaging, vol.17, No.3, p.463--468, June 1998. | ||
** paper available in http://www.bic.mni.mcgill.ca/users/louis/papers/phantom/[html]. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
import gzip | ||
import os | ||
|
||
import numpy as np | ||
from PIL import Image | ||
from scipy.ndimage import zoom | ||
|
||
|
||
def resample_volume_lanczos(byte_array, original_shape, new_shape): | ||
volume = np.frombuffer(byte_array, dtype=np.uint8).reshape(original_shape) | ||
zoom_factors = [n / o for n, o in zip(new_shape, original_shape)] | ||
resampled_volume = zoom(volume, zoom_factors, order=4) | ||
return resampled_volume | ||
|
||
|
||
def load_byte_array_from_file(file_path): | ||
with open(file_path, "rb") as file: | ||
byte_array = file.read() | ||
return byte_array | ||
|
||
|
||
file_path = "t1_icbm_normal_1mm_pn0_rf0.rawb" | ||
byte_array = load_byte_array_from_file(file_path) | ||
original_shape = (181, 217, 181) | ||
new_shape = (180, 216, 180) | ||
resampled_volume = resample_volume_lanczos(byte_array, original_shape, new_shape) | ||
|
||
np.save("t1_icbm_normal_1mm_pn0_rf0.npy", resampled_volume) | ||
|
||
|
||
file_path = "t1_icbm_normal_1mm_pn0_rf0.npy" | ||
data = np.load(file_path) | ||
os.makedirs("slices", exist_ok=True) | ||
|
||
for i, slice in enumerate(data): | ||
img = Image.fromarray(slice) | ||
if img.mode != "L": | ||
img = img.convert("L") | ||
img.save(f"slices/slice_{i:03d}.png") | ||
|
||
print(f"Exported {len(data)} slices.") | ||
|
||
source_directory = "slices" | ||
final_file_path = "t1_icbm_normal_1mm_pn0_rf0_180x216x180_uint8_1x1.bin" | ||
|
||
with open(final_file_path, "wb") as output_file: | ||
for file_name in sorted(os.listdir(source_directory)): | ||
if file_name.lower().endswith(".png"): | ||
source_path = os.path.join(source_directory, file_name) | ||
img = Image.open(source_path).convert("L") | ||
img_data = np.array(img, dtype=np.uint8) | ||
img_data.tofile(output_file) | ||
|
||
print("Images have been successfully converted and concatenated.") | ||
|
||
with open("t1_icbm_normal_1mm_pn0_rf0_180x216x180_uint8_1x1.bin", "rb") as f: | ||
bytes_data = f.read() | ||
|
||
gzip_filename = "t1_icbm_normal_1mm_pn0_rf0_180x216x180_uint8_1x1.bin-gz" | ||
|
||
with gzip.open(gzip_filename, "wb", compresslevel=9) as f: | ||
f.write(bytes_data) | ||
|
||
print(f"File compressed and saved as {gzip_filename}") |
Binary file added
BIN
+3.61 MB
public/assets/img/volume/t1_icbm_normal_1mm_pn0_rf0_180x216x180_uint8_1x1.bin-gz
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
<!DOCTYPE html> | ||
<html> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> | ||
<title>webgpu-samples: volumeRenderingTexture3D</title> | ||
<style> | ||
:root { | ||
color-scheme: light dark; | ||
} | ||
html, body { | ||
margin: 0; /* remove default margin */ | ||
height: 100%; /* make body fill the browser window */ | ||
display: flex; | ||
place-content: center center; | ||
} | ||
canvas { | ||
width: 600px; | ||
height: 600px; | ||
max-width: 100%; | ||
display: block; | ||
} | ||
</style> | ||
<script defer src="main.js" type="module"></script> | ||
<script defer type="module" src="../../js/iframe-helper.js"></script> | ||
</head> | ||
<body> | ||
<canvas></canvas> | ||
</body> | ||
</html> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
import { mat4 } from 'wgpu-matrix'; | ||
import { GUI } from 'dat.gui'; | ||
import volumeWGSL from './volume.wgsl'; | ||
|
||
const canvas = document.querySelector('canvas') as HTMLCanvasElement; | ||
|
||
const gui = new GUI(); | ||
|
||
// GUI parameters | ||
const params: { rotateCamera: boolean; near: number; far: number } = { | ||
rotateCamera: true, | ||
near: 2.0, | ||
far: 7.0, | ||
}; | ||
|
||
gui.add(params, 'rotateCamera', true); | ||
gui.add(params, 'near', 2.0, 7.0); | ||
gui.add(params, 'far', 2.0, 7.0); | ||
|
||
const adapter = await navigator.gpu.requestAdapter(); | ||
const device = await adapter.requestDevice(); | ||
const context = canvas.getContext('webgpu') as GPUCanvasContext; | ||
|
||
const sampleCount = 4; | ||
|
||
const devicePixelRatio = window.devicePixelRatio; | ||
canvas.width = canvas.clientWidth * devicePixelRatio; | ||
canvas.height = canvas.clientHeight * devicePixelRatio; | ||
const presentationFormat = navigator.gpu.getPreferredCanvasFormat(); | ||
|
||
context.configure({ | ||
device, | ||
format: presentationFormat, | ||
alphaMode: 'premultiplied', | ||
}); | ||
|
||
const pipeline = device.createRenderPipeline({ | ||
layout: 'auto', | ||
vertex: { | ||
module: device.createShaderModule({ | ||
code: volumeWGSL, | ||
}), | ||
}, | ||
fragment: { | ||
module: device.createShaderModule({ | ||
code: volumeWGSL, | ||
}), | ||
targets: [ | ||
{ | ||
format: presentationFormat, | ||
}, | ||
], | ||
}, | ||
primitive: { | ||
topology: 'triangle-list', | ||
cullMode: 'back', | ||
}, | ||
multisample: { | ||
count: sampleCount, | ||
}, | ||
}); | ||
|
||
const texture = device.createTexture({ | ||
size: [canvas.width, canvas.height], | ||
sampleCount, | ||
format: presentationFormat, | ||
usage: GPUTextureUsage.RENDER_ATTACHMENT, | ||
}); | ||
const view = texture.createView(); | ||
|
||
const uniformBufferSize = 4 * 16; // 4x4 matrix | ||
const uniformBuffer = device.createBuffer({ | ||
size: uniformBufferSize, | ||
usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST, | ||
}); | ||
|
||
// Fetch the image and upload it into a GPUTexture. | ||
let volumeTexture: GPUTexture; | ||
{ | ||
const width = 180; | ||
const height = 216; | ||
const depth = 180; | ||
const format: GPUTextureFormat = 'r8unorm'; | ||
const blockLength = 1; | ||
const bytesPerBlock = 1; | ||
const blocksWide = Math.ceil(width / blockLength); | ||
const blocksHigh = Math.ceil(height / blockLength); | ||
const bytesPerRow = blocksWide * bytesPerBlock; | ||
const dataPath = | ||
'../../assets/img/volume/t1_icbm_normal_1mm_pn0_rf0_180x216x180_uint8_1x1.bin-gz'; | ||
|
||
// Fetch the compressed data | ||
const response = await fetch(dataPath); | ||
const compressedArrayBuffer = await response.arrayBuffer(); | ||
|
||
// Decompress the data using DecompressionStream for gzip format | ||
const decompressionStream = new DecompressionStream('gzip'); | ||
const decompressedStream = new Response( | ||
compressedArrayBuffer | ||
).body.pipeThrough(decompressionStream); | ||
const decompressedArrayBuffer = await new Response( | ||
decompressedStream | ||
).arrayBuffer(); | ||
const byteArray = new Uint8Array(decompressedArrayBuffer); | ||
|
||
volumeTexture = device.createTexture({ | ||
dimension: '3d', | ||
size: [width, height, depth], | ||
format: format, | ||
usage: GPUTextureUsage.TEXTURE_BINDING | GPUTextureUsage.COPY_DST, | ||
}); | ||
|
||
device.queue.writeTexture( | ||
{ | ||
texture: volumeTexture, | ||
}, | ||
byteArray, | ||
{ bytesPerRow: bytesPerRow, rowsPerImage: blocksHigh }, | ||
[width, height, depth] | ||
); | ||
} | ||
|
||
// Create a sampler with linear filtering for smooth interpolation. | ||
const sampler = device.createSampler({ | ||
magFilter: 'linear', | ||
minFilter: 'linear', | ||
mipmapFilter: 'linear', | ||
maxAnisotropy: 16, | ||
}); | ||
|
||
const uniformBindGroup = device.createBindGroup({ | ||
layout: pipeline.getBindGroupLayout(0), | ||
entries: [ | ||
{ | ||
binding: 0, | ||
resource: { | ||
buffer: uniformBuffer, | ||
}, | ||
}, | ||
{ | ||
binding: 1, | ||
resource: sampler, | ||
}, | ||
{ | ||
binding: 2, | ||
resource: volumeTexture.createView(), | ||
}, | ||
], | ||
}); | ||
|
||
const renderPassDescriptor: GPURenderPassDescriptor = { | ||
colorAttachments: [ | ||
{ | ||
view: undefined, // Assigned later | ||
|
||
clearValue: { r: 0.5, g: 0.5, b: 0.5, a: 1.0 }, | ||
loadOp: 'clear', | ||
storeOp: 'discard', | ||
}, | ||
], | ||
}; | ||
|
||
let rotation = 0; | ||
|
||
function getInverseModelViewProjectionMatrix(deltaTime: number) { | ||
const viewMatrix = mat4.identity(); | ||
mat4.translate(viewMatrix, [0, 0, -4], viewMatrix); | ||
if (params.rotateCamera) { | ||
rotation += deltaTime; | ||
} | ||
mat4.rotate( | ||
viewMatrix, | ||
[Math.sin(rotation), Math.cos(rotation), 0], | ||
1, | ||
viewMatrix | ||
); | ||
|
||
const aspect = canvas.width / canvas.height; | ||
const projectionMatrix = mat4.perspective( | ||
(2 * Math.PI) / 5, | ||
aspect, | ||
params.near, | ||
params.far | ||
); | ||
const modelViewProjectionMatrix = mat4.multiply(projectionMatrix, viewMatrix); | ||
|
||
return mat4.invert(modelViewProjectionMatrix) as Float32Array; | ||
} | ||
|
||
let lastFrameMS = Date.now(); | ||
|
||
function frame() { | ||
const now = Date.now(); | ||
const deltaTime = (now - lastFrameMS) / 1000; | ||
lastFrameMS = now; | ||
|
||
const inverseModelViewProjection = | ||
getInverseModelViewProjectionMatrix(deltaTime); | ||
device.queue.writeBuffer(uniformBuffer, 0, inverseModelViewProjection); | ||
renderPassDescriptor.colorAttachments[0].view = view; | ||
renderPassDescriptor.colorAttachments[0].resolveTarget = context | ||
.getCurrentTexture() | ||
.createView(); | ||
|
||
const commandEncoder = device.createCommandEncoder(); | ||
const passEncoder = commandEncoder.beginRenderPass(renderPassDescriptor); | ||
passEncoder.setPipeline(pipeline); | ||
passEncoder.setBindGroup(0, uniformBindGroup); | ||
passEncoder.draw(3); | ||
passEncoder.end(); | ||
device.queue.submit([commandEncoder.finish()]); | ||
|
||
requestAnimationFrame(frame); | ||
} | ||
requestAnimationFrame(frame); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
export default { | ||
name: 'Volume Rendering - Texture 3D', | ||
description: `This example shows how to render volumes with WebGPU using a 3D | ||
texture. It demonstrates simple direct volume rendering for photometric content | ||
through ray marching in a fragment shader, where a full-screen triangle | ||
determines the color from ray start and step size values as set in the vertex | ||
shader. This implementation employs data from the BrainWeb Simulated Brain | ||
Database, with decompression streams, to save disk space and network traffic. | ||
The original raw data is generated using | ||
[the BrainWeb Simulated Brain Database](https://brainweb.bic.mni.mcgill.ca/brainweb/) | ||
before processing in | ||
[a custom Python script](https://github.com/webgpu/webgpu-samples/tree/main/public/assets/img/volume/t1_icbm_normal_1mm_pn0_rf0.py).`, | ||
filename: __DIRNAME__, | ||
sources: [{ path: 'main.ts' }, { path: 'volume.wgsl' }], | ||
}; |
Oops, something went wrong.