-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
qie
authored and
qie
committed
Jun 19, 2018
0 parents
commit 82472f5
Showing
13 changed files
with
12,680 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2017 solivr | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
# cython wrapper `np.array` <-> `cv::Mat` | ||
|
||
Implementation of cython wrapper to allow the convertion between a `numpy.array` and a `cv::Mat` and the other way arround (`cv::Mat` to `numpy.array`). | ||
|
||
To build, run `python setup.py build_ext --inplace`. | ||
|
||
Then try : | ||
```python | ||
import opencv_mat | ||
from scipy import misc | ||
|
||
im_np = misc.imread(filename/image) | ||
im_np2Mat2np = opencv_mat.np2Mat2np(im_np) | ||
``` | ||
|
||
We get back `im_np2Mat2np` which is the same as `im_np`. | ||
|
||
Feel free to integrate the `cdef np2Mat` and `cdef Mat2np` functions to your code! | ||
|
||
_Used with Python 3.5 and Opencv 3.2_ | ||
# cpp_python_convert |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,302 @@ | ||
#include <Python.h> | ||
#include "numpy/ndarrayobject.h" | ||
#include "opencv2/core/core.hpp" | ||
|
||
static PyObject* opencv_error = 0; | ||
|
||
static int failmsg(const char *fmt, ...) | ||
{ | ||
char str[1000]; | ||
|
||
va_list ap; | ||
va_start(ap, fmt); | ||
vsnprintf(str, sizeof(str), fmt, ap); | ||
va_end(ap); | ||
|
||
PyErr_SetString(PyExc_TypeError, str); | ||
return 0; | ||
} | ||
|
||
class PyAllowThreads | ||
{ | ||
public: | ||
PyAllowThreads() : _state(PyEval_SaveThread()) {} | ||
~PyAllowThreads() | ||
{ | ||
PyEval_RestoreThread(_state); | ||
} | ||
private: | ||
PyThreadState* _state; | ||
}; | ||
|
||
class PyEnsureGIL | ||
{ | ||
public: | ||
PyEnsureGIL() : _state(PyGILState_Ensure()) {} | ||
~PyEnsureGIL() | ||
{ | ||
PyGILState_Release(_state); | ||
} | ||
private: | ||
PyGILState_STATE _state; | ||
}; | ||
|
||
#define ERRWRAP2(expr) \ | ||
try \ | ||
{ \ | ||
PyAllowThreads allowThreads; \ | ||
expr; \ | ||
} \ | ||
catch (const cv::Exception &e) \ | ||
{ \ | ||
PyErr_SetString(opencv_error, e.what()); \ | ||
return 0; \ | ||
} | ||
|
||
using namespace cv; | ||
|
||
static PyObject* failmsgp(const char *fmt, ...) | ||
{ | ||
char str[1000]; | ||
|
||
va_list ap; | ||
va_start(ap, fmt); | ||
vsnprintf(str, sizeof(str), fmt, ap); | ||
va_end(ap); | ||
|
||
PyErr_SetString(PyExc_TypeError, str); | ||
return 0; | ||
} | ||
|
||
static size_t REFCOUNT_OFFSET = (size_t)&(((PyObject*)0)->ob_refcnt) + | ||
(0x12345678 != *(const size_t*)"\x78\x56\x34\x12\0\0\0\0\0")*sizeof(int); | ||
|
||
static inline PyObject* pyObjectFromRefcount(const int* refcount) | ||
{ | ||
return (PyObject*)((size_t)refcount - REFCOUNT_OFFSET); | ||
} | ||
|
||
static inline int* refcountFromPyObject(const PyObject* obj) | ||
{ | ||
return (int*)((size_t)obj + REFCOUNT_OFFSET); | ||
} | ||
|
||
class NumpyAllocator : public MatAllocator | ||
{ | ||
public: | ||
NumpyAllocator() {} | ||
~NumpyAllocator() {} | ||
|
||
void allocate(int dims, const int* sizes, int type, int*& refcount, | ||
uchar*& datastart, uchar*& data, size_t* step) | ||
{ | ||
PyEnsureGIL gil; | ||
|
||
int depth = CV_MAT_DEPTH(type); | ||
int cn = CV_MAT_CN(type); | ||
const int f = (int)(sizeof(size_t)/8); | ||
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE : | ||
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT : | ||
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT : | ||
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT; | ||
int i; | ||
npy_intp _sizes[CV_MAX_DIM+1]; | ||
for( i = 0; i < dims; i++ ) | ||
_sizes[i] = sizes[i]; | ||
if( cn > 1 ) | ||
{ | ||
/*if( _sizes[dims-1] == 1 ) | ||
_sizes[dims-1] = cn; | ||
else*/ | ||
_sizes[dims++] = cn; | ||
} | ||
PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum); | ||
if(!o) | ||
CV_Error_(CV_StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims)); | ||
refcount = refcountFromPyObject(o); | ||
npy_intp* _strides = PyArray_STRIDES(o); | ||
for( i = 0; i < dims - (cn > 1); i++ ) | ||
step[i] = (size_t)_strides[i]; | ||
datastart = data = (uchar*)PyArray_DATA(o); | ||
} | ||
|
||
void deallocate(int* refcount, uchar*, uchar*) | ||
{ | ||
PyEnsureGIL gil; | ||
if( !refcount ) | ||
return; | ||
PyObject* o = pyObjectFromRefcount(refcount); | ||
Py_INCREF(o); | ||
Py_DECREF(o); | ||
} | ||
}; | ||
|
||
NumpyAllocator g_numpyAllocator; | ||
|
||
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 }; | ||
|
||
static int pyopencv_to(const PyObject* o, Mat& m, const char* name = "<unknown>", bool allowND=true) | ||
{ | ||
if(!o || o == Py_None) | ||
{ | ||
if( !m.data ) | ||
m.allocator = &g_numpyAllocator; | ||
return true; | ||
} | ||
|
||
if( PyInt_Check(o) ) | ||
{ | ||
double v[] = {PyInt_AsLong((PyObject*)o), 0., 0., 0.}; | ||
m = Mat(4, 1, CV_64F, v).clone(); | ||
return true; | ||
} | ||
if( PyFloat_Check(o) ) | ||
{ | ||
double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.}; | ||
m = Mat(4, 1, CV_64F, v).clone(); | ||
return true; | ||
} | ||
if( PyTuple_Check(o) ) | ||
{ | ||
int i, sz = (int)PyTuple_Size((PyObject*)o); | ||
m = Mat(sz, 1, CV_64F); | ||
for( i = 0; i < sz; i++ ) | ||
{ | ||
PyObject* oi = PyTuple_GET_ITEM(o, i); | ||
if( PyInt_Check(oi) ) | ||
m.at<double>(i) = (double)PyInt_AsLong(oi); | ||
else if( PyFloat_Check(oi) ) | ||
m.at<double>(i) = (double)PyFloat_AsDouble(oi); | ||
else | ||
{ | ||
failmsg("%s is not a numerical tuple", name); | ||
m.release(); | ||
return false; | ||
} | ||
} | ||
return true; | ||
} | ||
|
||
if( !PyArray_Check(o) ) | ||
{ | ||
failmsg("%s is not a numpy array, neither a scalar", name); | ||
return false; | ||
} | ||
|
||
bool needcopy = false, needcast = false; | ||
int typenum = PyArray_TYPE(o), new_typenum = typenum; | ||
int type = typenum == NPY_UBYTE ? CV_8U : | ||
typenum == NPY_BYTE ? CV_8S : | ||
typenum == NPY_USHORT ? CV_16U : | ||
typenum == NPY_SHORT ? CV_16S : | ||
typenum == NPY_INT ? CV_32S : | ||
typenum == NPY_INT32 ? CV_32S : | ||
typenum == NPY_FLOAT ? CV_32F : | ||
typenum == NPY_DOUBLE ? CV_64F : -1; | ||
|
||
if( type < 0 ) | ||
{ | ||
if( typenum == NPY_INT64 || typenum == NPY_UINT64 || type == NPY_LONG ) | ||
{ | ||
needcopy = needcast = true; | ||
new_typenum = NPY_INT; | ||
type = CV_32S; | ||
} | ||
else | ||
{ | ||
failmsg("%s data type = %d is not supported", name, typenum); | ||
return false; | ||
} | ||
} | ||
|
||
int ndims = PyArray_NDIM(o); | ||
if(ndims >= CV_MAX_DIM) | ||
{ | ||
failmsg("%s dimensionality (=%d) is too high", name, ndims); | ||
return false; | ||
} | ||
|
||
int size[CV_MAX_DIM+1]; | ||
size_t step[CV_MAX_DIM+1], elemsize = CV_ELEM_SIZE1(type); | ||
const npy_intp* _sizes = PyArray_DIMS(o); | ||
const npy_intp* _strides = PyArray_STRIDES(o); | ||
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX; | ||
|
||
for( int i = ndims-1; i >= 0 && !needcopy; i-- ) | ||
{ | ||
// these checks handle cases of | ||
// a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases | ||
// b) transposed arrays, where _strides[] elements go in non-descending order | ||
// c) flipped arrays, where some of _strides[] elements are negative | ||
if( (i == ndims-1 && (size_t)_strides[i] != elemsize) || | ||
(i < ndims-1 && _strides[i] < _strides[i+1]) ) | ||
needcopy = true; | ||
} | ||
|
||
if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] ) | ||
needcopy = true; | ||
|
||
if (needcopy) | ||
{ | ||
if( needcast ) | ||
o = (PyObject*)PyArray_Cast((PyArrayObject*)o, new_typenum); | ||
else | ||
o = (PyObject*)PyArray_GETCONTIGUOUS((PyArrayObject*)o); | ||
_strides = PyArray_STRIDES(o); | ||
} | ||
|
||
for(int i = 0; i < ndims; i++) | ||
{ | ||
size[i] = (int)_sizes[i]; | ||
step[i] = (size_t)_strides[i]; | ||
} | ||
|
||
// handle degenerate case | ||
if( ndims == 0) { | ||
size[ndims] = 1; | ||
step[ndims] = elemsize; | ||
ndims++; | ||
} | ||
|
||
if( ismultichannel ) | ||
{ | ||
ndims--; | ||
type |= CV_MAKETYPE(0, size[2]); | ||
} | ||
|
||
if( ndims > 2 && !allowND ) | ||
{ | ||
failmsg("%s has more than 2 dimensions", name); | ||
return false; | ||
} | ||
|
||
m = Mat(ndims, size, type, PyArray_DATA(o), step); | ||
|
||
if( m.data ) | ||
{ | ||
m.refcount = refcountFromPyObject(o); | ||
if (!needcopy) | ||
{ | ||
m.addref(); // protect the original numpy array from deallocation | ||
// (since Mat destructor will decrement the reference counter) | ||
} | ||
}; | ||
m.allocator = &g_numpyAllocator; | ||
|
||
return true; | ||
} | ||
|
||
static PyObject* pyopencv_from(const Mat& m) | ||
{ | ||
if( !m.data ) | ||
Py_RETURN_NONE; | ||
Mat temp, *p = (Mat*)&m; | ||
if(!p->refcount || p->allocator != &g_numpyAllocator) | ||
{ | ||
temp.allocator = &g_numpyAllocator; | ||
ERRWRAP2(m.copyTo(temp)); | ||
p = &temp; | ||
} | ||
p->addref(); | ||
return pyObjectFromRefcount(p->refcount); | ||
} |
Oops, something went wrong.