This repository allows you to evaluate results using mAP metrics.
Use main.py
to perform object detection inference on a set of images.
--model_path
(str, required): Path to the model file (.rknn
,.onnx
).--dataset_path
(str): Path to validation-images and YOLO annotation files (labels) (default:data/
).
python main.py \
--model_path models/yolov8.rknn \
--dataset_path data/
-
Prepare Data
- Place your images in
data/images
. - Place your annotations
.txt
files indata/labels
.
- Place your images in
-
Configure detector
Adjust thresholds, input-image sizes, and class labels as needed.
-
Run Inference and Evaluation
python main.py \ --model_path models/yolov8.rknn \ --dataset_path data/
-
View Results
- mAP metrics will be printed in the console.