Skip to content

vvabi-sabi/ds_rknn_metrics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RKNN metrics

This repository allows you to evaluate results using mAP metrics.

Usage

Running Inference

Use main.py to perform object detection inference on a set of images.

Command-Line Arguments

  • --model_path (str, required): Path to the model file (.rknn, .onnx).
  • --dataset_path (str): Path to validation-images and YOLO annotation files (labels) (default: data/).

Example Command

python main.py \
    --model_path models/yolov8.rknn \
    --dataset_path data/

Example

  1. Prepare Data

    • Place your images in data/images.
    • Place your annotations .txt files in data/labels.
  2. Configure detector

    Adjust thresholds, input-image sizes, and class labels as needed.

  3. Run Inference and Evaluation

    python main.py \
        --model_path models/yolov8.rknn \
        --dataset_path data/ 
  4. View Results

    • mAP metrics will be printed in the console.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages