-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ddcfdff
commit 65fa0c6
Showing
5 changed files
with
1,297 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
import argparse | ||
import time | ||
from pathlib import Path | ||
|
||
import cv2 | ||
import torch | ||
import torch.backends.cudnn as cudnn | ||
from numpy import random | ||
|
||
from models.experimental import attempt_load | ||
from utils.datasets import LoadStreams, LoadImages | ||
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ | ||
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path | ||
from utils.plots import plot_one_box | ||
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel | ||
|
||
|
||
def detect(save_img=False): | ||
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace | ||
save_img = not opt.nosave and not source.endswith('.txt') # save inference images | ||
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( | ||
('rtsp://', 'rtmp://', 'http://', 'https://')) | ||
|
||
# Directories | ||
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run | ||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir | ||
|
||
# Initialize | ||
set_logging() | ||
device = select_device(opt.device) | ||
half = device.type != 'cpu' # half precision only supported on CUDA | ||
|
||
# Load model | ||
model = attempt_load(weights, map_location=device) # load FP32 model | ||
stride = int(model.stride.max()) # model stride | ||
imgsz = check_img_size(imgsz, s=stride) # check img_size | ||
|
||
if trace: | ||
model = TracedModel(model, device, opt.img_size) | ||
|
||
if half: | ||
model.half() # to FP16 | ||
|
||
# Second-stage classifier | ||
classify = False | ||
if classify: | ||
modelc = load_classifier(name='resnet101', n=2) # initialize | ||
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() | ||
|
||
# Set Dataloader | ||
vid_path, vid_writer = None, None | ||
if webcam: | ||
view_img = check_imshow() | ||
cudnn.benchmark = True # set True to speed up constant image size inference | ||
dataset = LoadStreams(source, img_size=imgsz, stride=stride) | ||
else: | ||
dataset = LoadImages(source, img_size=imgsz, stride=stride) | ||
|
||
# Get names and colors | ||
names = model.module.names if hasattr(model, 'module') else model.names | ||
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] | ||
|
||
# Run inference | ||
if device.type != 'cpu': | ||
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once | ||
old_img_w = old_img_h = imgsz | ||
old_img_b = 1 | ||
|
||
t0 = time.time() | ||
for path, img, im0s, vid_cap in dataset: | ||
img = torch.from_numpy(img).to(device) | ||
img = img.half() if half else img.float() # uint8 to fp16/32 | ||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | ||
if img.ndimension() == 3: | ||
img = img.unsqueeze(0) | ||
|
||
# Warmup | ||
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]): | ||
old_img_b = img.shape[0] | ||
old_img_h = img.shape[2] | ||
old_img_w = img.shape[3] | ||
for i in range(3): | ||
model(img, augment=opt.augment)[0] | ||
|
||
# Inference | ||
t1 = time_synchronized() | ||
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak | ||
pred = model(img, augment=opt.augment)[0] | ||
t2 = time_synchronized() | ||
|
||
# Apply NMS | ||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) | ||
t3 = time_synchronized() | ||
|
||
# Apply Classifier | ||
if classify: | ||
pred = apply_classifier(pred, modelc, img, im0s) | ||
|
||
# Process detections | ||
for i, det in enumerate(pred): # detections per image | ||
if webcam: # batch_size >= 1 | ||
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count | ||
else: | ||
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) | ||
|
||
p = Path(p) # to Path | ||
save_path = str(save_dir / p.name) # img.jpg | ||
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt | ||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | ||
if len(det): | ||
# Rescale boxes from img_size to im0 size | ||
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | ||
|
||
# Print results | ||
for c in det[:, -1].unique(): | ||
n = (det[:, -1] == c).sum() # detections per class | ||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | ||
|
||
# Write results | ||
for *xyxy, conf, cls in reversed(det): | ||
if save_txt: # Write to file | ||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | ||
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format | ||
with open(txt_path + '.txt', 'a') as f: | ||
f.write(('%g ' * len(line)).rstrip() % line + '\n') | ||
|
||
if save_img or view_img: # Add bbox to image | ||
label = f'{names[int(cls)]} {conf:.2f}' | ||
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1) | ||
|
||
# Print time (inference + NMS) | ||
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS') | ||
|
||
# Stream results | ||
if view_img: | ||
cv2.imshow(str(p), im0) | ||
cv2.waitKey(1) # 1 millisecond | ||
|
||
# Save results (image with detections) | ||
if save_img: | ||
if dataset.mode == 'image': | ||
cv2.imwrite(save_path, im0) | ||
print(f" The image with the result is saved in: {save_path}") | ||
else: # 'video' or 'stream' | ||
if vid_path != save_path: # new video | ||
vid_path = save_path | ||
if isinstance(vid_writer, cv2.VideoWriter): | ||
vid_writer.release() # release previous video writer | ||
if vid_cap: # video | ||
fps = vid_cap.get(cv2.CAP_PROP_FPS) | ||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | ||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | ||
else: # stream | ||
fps, w, h = 30, im0.shape[1], im0.shape[0] | ||
save_path += '.mp4' | ||
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) | ||
vid_writer.write(im0) | ||
|
||
if save_txt or save_img: | ||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | ||
#print(f"Results saved to {save_dir}{s}") | ||
|
||
print(f'Done. ({time.time() - t0:.3f}s)') | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)') | ||
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam | ||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | ||
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') | ||
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') | ||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | ||
parser.add_argument('--view-img', action='store_true', help='display results') | ||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | ||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | ||
parser.add_argument('--nosave', action='store_true', help='do not save images/videos') | ||
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | ||
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | ||
parser.add_argument('--augment', action='store_true', help='augmented inference') | ||
parser.add_argument('--update', action='store_true', help='update all models') | ||
parser.add_argument('--project', default='runs/detect', help='save results to project/name') | ||
parser.add_argument('--name', default='exp', help='save results to project/name') | ||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | ||
parser.add_argument('--no-trace', action='store_true', help='don`t trace model') | ||
opt = parser.parse_args() | ||
print(opt) | ||
#check_requirements(exclude=('pycocotools', 'thop')) | ||
|
||
with torch.no_grad(): | ||
if opt.update: # update all models (to fix SourceChangeWarning) | ||
for opt.weights in ['yolov7.pt']: | ||
detect() | ||
strip_optimizer(opt.weights) | ||
else: | ||
detect() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# Usage: pip install -r requirements.txt | ||
|
||
# Base ---------------------------------------- | ||
matplotlib>=3.2.2 | ||
numpy>=1.18.5 | ||
opencv-python>=4.1.1 | ||
Pillow>=7.1.2 | ||
PyYAML>=5.3.1 | ||
requests>=2.23.0 | ||
scipy>=1.4.1 | ||
tqdm>=4.41.0 | ||
protobuf<4.21.3 | ||
|
||
# Logging ------------------------------------- | ||
tensorboard>=2.4.1 | ||
# wandb | ||
|
||
# Plotting ------------------------------------ | ||
pandas>=1.1.4 | ||
seaborn>=0.11.0 | ||
|
||
# Export -------------------------------------- | ||
# coremltools>=4.1 # CoreML export | ||
# onnx>=1.9.0 # ONNX export | ||
# onnx-simplifier>=0.3.6 # ONNX simplifier | ||
# scikit-learn==0.19.2 # CoreML quantization | ||
# tensorflow>=2.4.1 # TFLite export | ||
# tensorflowjs>=3.9.0 # TF.js export | ||
# openvino-dev # OpenVINO export | ||
|
||
# Extras -------------------------------------- | ||
ipython # interactive notebook | ||
psutil # system utilization | ||
thop # FLOPs computation | ||
# albumentations>=1.0.3 | ||
# pycocotools>=2.0 # COCO mAP | ||
# roboflow |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
# For Torch GPU | ||
|
||
-i https://download.pytorch.org/whl/cu113 | ||
|
||
torch==1.11.0+cu113 | ||
torchvision==0.12.0+cu113 |
Oops, something went wrong.