Skip to content

[Feature] A calibration-free RTN-based quantization for accurate and accelerated INT4/INT8 inference #18768

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from

Conversation

sakogan
Copy link

@sakogan sakogan commented May 27, 2025

This PR adds basic support for RTN quantization, as a first step for supporting a calibration-free RTN-based quantization for accurate and accelerated INT4/INT8 inference (see this paper for details).

RTN is a simple quantization method that does not require any calibration data nor a corresponding calibration process.
As such, it can be applied on-the-fly (i.e., while loading an original model) in a fast and cheap way, even on a system that does not have enough memory to host the original (unquantized) model. Yet, RTN is often believed to lag behind more advanced quantization techniques in two crucial areas – generation throughput and accuracy.

As this paper shows, both issues can be alleviated, through the use of efficient CUDA kernels based on Marlin (for throughput) and selective quantization (for accuracy). The latter is a simple mechanism that allows a user to select layers and/or specific linear modules that should be quantized to a higher precision. For instance, leaving just a part of one layer of Llama-3.1 70B model in 8 bit precision, while quantizing the rest of that layer and all other 79 layers into 4 bits leads to a substantially improved recovery rate, on-par with or better than other techniques:
Screenshot 2025-05-27 at 12 38 22 PM
Note that this adds less than 0.05 bits per weight on average, resulting in only insignificant memory increase.

As noted above, this PR is for basic Python-based implementation for RTN that supports quantizing models on-the-fly.
Once approved, we intend to enhance it with:

  • Optimized CUDA (Marlin-based) kernels (for fast GEMM operations).
  • Support for selective quantization (for improved accuracy)
  • Support for MoE models

Copy link

👋 Hi! Thank you for contributing to the vLLM project.

💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.

Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run fastcheck CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your fastcheck build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping simon-mo or khluu to add you in our Buildkite org.

Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.

To run CI, PR reviewers can either: Add ready label to the PR or enable auto-merge.

🚀

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant