Skip to content

[Kernel] GGUF MMVQ kernel for multiple input vectors #18754

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 24 additions & 23 deletions csrc/quantization/gguf/gguf_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -92,111 +92,112 @@ torch::Tensor ggml_mul_mat_vec_a8(torch::Tensor W, // quant weight
torch::Tensor X, // input
int64_t type, int64_t row) {
int col = X.sizes()[1];
int vecs = X.sizes()[0];
const int padded = (col + 512 - 1) / 512 * 512;
const at::cuda::OptionalCUDAGuard device_guard(device_of(X));
auto options = torch::TensorOptions().dtype(X.dtype()).device(W.device());
at::Tensor Y = torch::empty({1, row}, options);
at::Tensor Y = torch::empty({vecs, row}, options);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
options = torch::TensorOptions().dtype(torch::kInt32).device(W.device());
at::Tensor quant_X = torch::empty({1, padded / 32 * 9}, options);
at::Tensor quant_X = torch::empty({vecs, padded / 32 * 9}, options);
VLLM_DISPATCH_FLOATING_TYPES(X.scalar_type(), "ggml_mul_mat_vec_a8", [&] {
quantize_row_q8_1_cuda<scalar_t>((scalar_t*)X.data_ptr(),
(void*)quant_X.data_ptr(), col, 1, stream);
quantize_row_q8_1_cuda<scalar_t>(
(scalar_t*)X.data_ptr(), (void*)quant_X.data_ptr(), col, vecs, stream);
switch (type) {
case 2:
mul_mat_vec_q4_0_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 3:
mul_mat_vec_q4_1_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 6:
mul_mat_vec_q5_0_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 7:
mul_mat_vec_q5_1_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 8:
mul_mat_vec_q8_0_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 10:
mul_mat_vec_q2_K_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 11:
mul_mat_vec_q3_K_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 12:
mul_mat_vec_q4_K_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 13:
mul_mat_vec_q5_K_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 14:
mul_mat_vec_q6_K_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 16:
mul_mat_vec_iq2_xxs_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 17:
mul_mat_vec_iq2_xs_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 18:
mul_mat_vec_iq3_xxs_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 19:
mul_mat_vec_iq1_s_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 20:
mul_mat_vec_iq4_nl_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 21:
mul_mat_vec_iq3_s_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 22:
mul_mat_vec_iq2_s_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 23:
mul_mat_vec_iq4_xs_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
case 29:
mul_mat_vec_iq1_m_q8_1_cuda<scalar_t>(
(void*)W.data_ptr(), (void*)quant_X.data_ptr(),
(scalar_t*)Y.data_ptr(), col, row, stream);
(scalar_t*)Y.data_ptr(), col, row, vecs, stream);
break;
}
});
Expand Down
Loading