Skip to content

[Bugfix] Fix the failing gte embedding test #18720

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 13 commits into from
May 29, 2025
13 changes: 7 additions & 6 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -311,6 +311,7 @@ def __init__(
dtype: str = "auto",
*,
model_kwargs: Optional[dict[str, Any]] = None,
trust_remote_code: bool = True,
is_sentence_transformer: bool = False,
is_cross_encoder: bool = False,
skip_tokenizer_init: bool = False,
Expand All @@ -320,7 +321,7 @@ def __init__(

self.config = AutoConfig.from_pretrained(
model_name,
trust_remote_code=True,
trust_remote_code=trust_remote_code,
)
self.device = self.get_default_device()
self.dtype = torch_dtype = _get_and_verify_dtype(self.config, dtype)
Expand All @@ -336,7 +337,7 @@ def __init__(
model_name,
device=self.device,
model_kwargs=model_kwargs,
trust_remote_code=True,
trust_remote_code=trust_remote_code,
)
elif is_cross_encoder:
# Lazy init required for AMD CI
Expand All @@ -346,12 +347,12 @@ def __init__(
model_name,
device=self.device,
automodel_args=model_kwargs,
trust_remote_code=True,
trust_remote_code=trust_remote_code,
)
else:
model = auto_cls.from_pretrained(
model_name,
trust_remote_code=True,
trust_remote_code=trust_remote_code,
**model_kwargs,
)

Expand All @@ -372,7 +373,7 @@ def __init__(
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
torch_dtype=torch_dtype,
trust_remote_code=True,
trust_remote_code=trust_remote_code,
)

# don't put this import at the top level
Expand All @@ -381,7 +382,7 @@ def __init__(
self.processor = AutoProcessor.from_pretrained(
model_name,
torch_dtype=torch_dtype,
trust_remote_code=True,
trust_remote_code=trust_remote_code,
)
if skip_tokenizer_init:
self.tokenizer = self.processor.tokenizer
Expand Down
18 changes: 11 additions & 7 deletions tests/models/language/pooling/test_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,18 +10,22 @@
@pytest.mark.parametrize(
"model",
[
# [Encoder-only]
pytest.param("BAAI/bge-base-en-v1.5",
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
pytest.param("sentence-transformers/all-MiniLM-L12-v2"),
pytest.param("intfloat/multilingual-e5-small"),
pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct"),
# Be careful of the order of models, decoder-only models should be
# placed before encoder-only models, otherwise `Qwen2.5-0.5B-Instruct`
# case won't pass because gte-Qwen2-1.5B-instruct will cache custom
# model code with bidirectional attention.
# [Decoder-only]
pytest.param("BAAI/bge-multilingual-gemma2",
marks=[pytest.mark.core_model]),
pytest.param("intfloat/e5-mistral-7b-instruct",
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
pytest.param("ssmits/Qwen2-7B-Instruct-embed-base"),
# [Encoder-only]
pytest.param("BAAI/bge-base-en-v1.5",
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
pytest.param("sentence-transformers/all-MiniLM-L12-v2"),
pytest.param("intfloat/multilingual-e5-small"),
pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct"),
# [Cross-Encoder]
pytest.param("sentence-transformers/stsb-roberta-base-v2"),
],
Expand All @@ -44,7 +48,7 @@ def test_models(
vllm_extra_kwargs = {}
if model == "ssmits/Qwen2-7B-Instruct-embed-base":
vllm_extra_kwargs["override_pooler_config"] = \
PoolerConfig(pooling_type="MEAN")
PoolerConfig(pooling_type="MEAN", normalize=False)

# The example_prompts has ending "\n", for example:
# "Write a short story about a robot that dreams for the first time.\n"
Expand Down
1 change: 1 addition & 0 deletions tests/models/language/pooling/test_gte.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@
########### Qwen2ForCausalLM
EmbedModelInfo("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
architecture="Qwen2ForCausalLM",
dtype="float32",
enable_test=True),
########## ModernBertModel
EmbedModelInfo("Alibaba-NLP/gte-modernbert-base",
Expand Down
1 change: 1 addition & 0 deletions tests/models/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -314,6 +314,7 @@ def check_embeddings_close(
dim=0)

fail_msg = (f"Test{prompt_idx}:"
f"\nCosine similarity: \t{sim:.4f}"
f"\n{name_0}:\t{embeddings_0[:16]!r}"
f"\n{name_1}:\t{embeddings_1[:16]!r}")

Expand Down