Skip to content

Commit

Permalink
claude
Browse files Browse the repository at this point in the history
Signed-off-by: Kyle Sayers <[email protected]>
  • Loading branch information
kylesayrs committed Mar 10, 2025
1 parent e6a6946 commit 9134e5e
Show file tree
Hide file tree
Showing 13 changed files with 26 additions and 26 deletions.
2 changes: 1 addition & 1 deletion tests/llmcompressor/entrypoints/test_oneshot.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
def test_oneshot_from_args():
# Select model and load it.
stub = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
model = AutoModelForCausalLM.from_pretrained(stub, use_safetensors=False)
model = AutoModelForCausalLM.from_pretrained(stub, use_safetensors=("stories" in stub))
dataset = "HuggingFaceH4/ultrachat_200k"

NUM_CALIBRATION_SAMPLES = 512
Expand Down
2 changes: 1 addition & 1 deletion tests/llmcompressor/observers/test_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def _prep_for_input_quant_calibration(module: torch.nn.Module):


def test_get_observer_token_count():
model = AutoModelForCausalLM.from_pretrained("Isotonic/TinyMixtral-4x248M-MoE", use_safetensors=False)
model = AutoModelForCausalLM.from_pretrained("Isotonic/TinyMixtral-4x248M-MoE", use_safetensors=("stories" in "Isotonic/TinyMixtral-4x248M-MoE"))
tokenizer = AutoTokenizer.from_pretrained("Isotonic/TinyMixtral-4x248M-MoE")
model.eval()
config = QuantizationConfig(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,15 +50,15 @@ def setUpClass(self):
torch_dtype="auto",
device_map="auto",
quantization_config=CompressedTensorsConfig(run_compressed=False),
use_safetensors=False,
use_safetensors=("stories" in self.compressed_model_stub),
)

# Manually decompress this model
self.dense_model = AutoModelForCausalLM.from_pretrained(
self.skeleton_model_stub,
torch_dtype=self.decompressed_model_hf_quantizer.dtype,
device_map=self.decompressed_model_hf_quantizer.device,
use_safetensors=False,
use_safetensors=("stories" in self.skeleton_model_stub),
)

# decompression from HFQuantizer should populate weight_scale
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def setUpClass(cls):
cls.test_dir = tempfile.mkdtemp()

cls.model = AutoModelForCausalLM.from_pretrained(
cls.model_stub, torch_dtype=cls.weight_dtype, device_map="cuda:0", use_safetensors=False
cls.model_stub, torch_dtype=cls.weight_dtype, device_map="cuda:0", use_safetensors=("stories" in cls.model_stub)
)
model = cls._run_oneshot(
cls.model,
Expand Down Expand Up @@ -100,7 +100,7 @@ def test_quantization_reload(self):
os.path.join(self.test_dir, self.output),
torch_dtype="auto",
device_map="cuda:0",
use_safetensors=False,
use_safetensors=("stories" in os.path.join(self.test_dir, self.output)),
)

og_weights, og_inputs = self._get_quant_info(self.model)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,15 +50,15 @@ def setUpClass(self):
torch_dtype="auto",
device_map="auto",
quantization_config=CompressedTensorsConfig(run_compressed=False),
use_safetensors=False,
use_safetensors=("stories" in self.compressed_model_stub),
)

# Manually decompress this model
self.dense_model = AutoModelForCausalLM.from_pretrained(
self.skeleton_model_stub,
torch_dtype=self.decompressed_model_hf_quantizer.dtype,
device_map=self.decompressed_model_hf_quantizer.device,
use_safetensors=False,
use_safetensors=("stories" in self.skeleton_model_stub),
)

# decompression from HFQuantizer should populate weight_scale
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def setUp(self):
def test_oneshot_sparsification_then_finetune(self):
recipe_str = "tests/llmcompressor/transformers/obcq/recipes/test_tiny2.yaml"
model = AutoModelForCausalLM.from_pretrained(
"Xenova/llama2.c-stories15M", device_map="auto", use_safetensors=False
"Xenova/llama2.c-stories15M", device_map="auto", use_safetensors=("stories" in "Xenova/llama2.c-stories15M")
)
dataset = "open_platypus"
concatenate_data = False
Expand Down Expand Up @@ -49,10 +49,10 @@ def test_oneshot_sparsification_then_finetune(self):
self.output / "oneshot_out",
device_map="auto",
quantization_config=self.quantization_config,
use_safetensors=False,
use_safetensors=("stories" in str(self.output / "oneshot_out")),
)
distill_teacher = AutoModelForCausalLM.from_pretrained(
"Xenova/llama2.c-stories15M", device_map="auto", use_safetensors=False
"Xenova/llama2.c-stories15M", device_map="auto", use_safetensors=("stories" in "Xenova/llama2.c-stories15M")
)
dataset = "open_platypus"
concatenate_data = False
Expand All @@ -76,7 +76,7 @@ def test_oneshot_sparsification_then_finetune(self):
# with the saved model
# Explictly decompress the model for training using quantization_config
model = AutoModelForCausalLM.from_pretrained(
output_dir, device_map="auto", quantization_config=self.quantization_config, use_safetensors=False
output_dir, device_map="auto", quantization_config=self.quantization_config, use_safetensors=("stories" in str(output_dir))
)
with create_session():
train(
Expand All @@ -99,7 +99,7 @@ def test_oneshot_quantization_then_finetune(self):
model = AutoModelForCausalLM.from_pretrained(
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
device_map="auto",
use_safetensors=False,
use_safetensors=("stories" in "TinyLlama/TinyLlama-1.1B-Chat-v1.0"),
)
dataset = "open_platypus"
concatenate_data = False
Expand All @@ -125,7 +125,7 @@ def test_oneshot_quantization_then_finetune(self):
output_dir,
device_map="auto",
quantization_config=quantization_config,
use_safetensors=False,
use_safetensors=("stories" in str(output_dir)),
)
dataset = "open_platypus"
concatenate_data = False
Expand All @@ -145,7 +145,7 @@ def test_oneshot_quantization_then_finetune(self):

# test reloading checkpoint and final model
model = AutoModelForCausalLM.from_pretrained(
output_dir, device_map="auto", quantization_config=quantization_config, use_safetensors=False
output_dir, device_map="auto", quantization_config=quantization_config, use_safetensors=("stories" in str(output_dir))
)
with create_session():
train(
Expand Down
2 changes: 1 addition & 1 deletion tests/llmcompressor/transformers/gptq/test_oneshot.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def test_oneshot_application(self):
num_calibration_samples=9,
)
model_loaded = AutoModelForCausalLM.from_pretrained(
self.output, device_map=self.device, use_safetensors=False
self.output, device_map=self.device, use_safetensors=("stories" in self.output)
)

# Check that the model is quantized
Expand Down
6 changes: 3 additions & 3 deletions tests/llmcompressor/transformers/kv_cache/test_kv_cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ def test_kv_cache_model_state_dict_attr(oneshot_fixture, tmp_path):
model, used_args = next(oneshot_fixture(tmp_path))
output_dir = used_args["output_dir"]
with init_empty_weights():
model = AutoModelForCausalLM.from_pretrained(str(output_dir), use_safetensors=False)
model = AutoModelForCausalLM.from_pretrained(str(output_dir), use_safetensors=("stories" in str(output_dir)))

counts = 0
for name, submodule in iter_named_quantizable_modules(
Expand Down Expand Up @@ -196,7 +196,7 @@ def test_kv_cache_gptq_config_format(kv_cache_fixture, tmp_path):
assert kv_cache_scheme["symmetric"] == used_args["symmetric"]

with init_empty_weights():
model = AutoModelForCausalLM.from_pretrained(output_dir, use_safetensors=False)
model = AutoModelForCausalLM.from_pretrained(output_dir, use_safetensors=("stories" in output_dir))

counts = 0
for name, submodule in iter_named_quantizable_modules(
Expand Down Expand Up @@ -238,7 +238,7 @@ def test_kv_cache_gptq_model_state_dict_attr(kv_cache_fixture, tmp_path):
output_dir, _ = next(kv_cache_fixture(recipe, tmp_path))

with init_empty_weights():
model = AutoModelForCausalLM.from_pretrained(output_dir, use_safetensors=False)
model = AutoModelForCausalLM.from_pretrained(output_dir, use_safetensors=("stories" in output_dir))

counts = 0
for name, submodule in iter_named_quantizable_modules(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
def test_infer_targets():
modifier = SparseGPTModifier(sparsity=0.0)
with init_empty_weights():
model = AutoModelForCausalLM.from_pretrained("Xenova/llama2.c-stories15M", use_safetensors=False)
model = AutoModelForCausalLM.from_pretrained("Xenova/llama2.c-stories15M", use_safetensors=("stories" in "Xenova/llama2.c-stories15M"))

inferred = modifier._infer_sequential_targets(model)
assert inferred == ["LlamaDecoderLayer"]
2 changes: 1 addition & 1 deletion tests/llmcompressor/transformers/obcq/test_obcq_lm_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ def setUp(self):
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"

self.model = AutoModelForCausalLM.from_pretrained(
"Xenova/llama2.c-stories15M", device_map=self.device, use_safetensors=False
"Xenova/llama2.c-stories15M", device_map=self.device, use_safetensors=("stories" in "Xenova/llama2.c-stories15M")
)

self.kwargs = {
Expand Down
2 changes: 1 addition & 1 deletion tests/llmcompressor/transformers/obcq/test_obcq_owl.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ def test_infer_owl_layer_sparsity():
modifier = SparseGPTModifier(
sparsity=0.7, sparsity_profile="owl", owl_m=5, owl_lmbda=0.05
)
model = AutoModelForCausalLM.from_pretrained("Xenova/llama2.c-stories15M", use_safetensors=False)
model = AutoModelForCausalLM.from_pretrained("Xenova/llama2.c-stories15M", use_safetensors=("stories" in "Xenova/llama2.c-stories15M"))

dataset = Dataset.from_dict(
{"input_ids": torch.randint(0, vocab_size, (ds_size, seq_len))}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ def setUp(self):
from transformers import AutoModelForCausalLM, AutoTokenizer

self.tokenizer = AutoTokenizer.from_pretrained(self.model)
self.model = AutoModelForCausalLM.from_pretrained(self.model, use_safetensors=False)
self.model = AutoModelForCausalLM.from_pretrained(self.model, use_safetensors=("stories" in self.model))
self.output = "./oneshot_output"
self.kwargs = {"dataset_config_name": self.dataset_config_name}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ def test_sparse_model_reload(compressed, config, dtype, tmp_path):
transformers_logger.setLevel(level=logging.ERROR)

model = AutoModelForCausalLM.from_pretrained(
tmp_path / "oneshot_out", torch_dtype=dtype, use_safetensors=False
tmp_path / "oneshot_out", torch_dtype=dtype, use_safetensors=("stories" in str(tmp_path / "oneshot_out"))
)

# restore transformers logging level now that model shell is loaded
Expand Down Expand Up @@ -113,7 +113,7 @@ def test_sparse_model_reload(compressed, config, dtype, tmp_path):
assert sparsity_config["sparsity_structure"] == inferred_structure

dense_model = AutoModelForCausalLM.from_pretrained(
tmp_path / "compress_out", torch_dtype="auto", use_safetensors=False
tmp_path / "compress_out", torch_dtype="auto", use_safetensors=("stories" in str(tmp_path / "compress_out"))
)

og_state_dict = model.state_dict()
Expand All @@ -136,7 +136,7 @@ def test_dense_model_save(tmp_path, skip_compression_stats, save_compressed):
reset_session()

model_path = "Xenova/llama2.c-stories15M"
model = AutoModelForCausalLM.from_pretrained(model_path, use_safetensors=False)
model = AutoModelForCausalLM.from_pretrained(model_path, use_safetensors=("stories" in model_path))

inferred_global_sparsity = SparsityConfigMetadata.infer_global_sparsity(model)
assert math.isclose(inferred_global_sparsity, 0.0, rel_tol=1e-3)
Expand Down

0 comments on commit 9134e5e

Please sign in to comment.