Skip to content

Commit

Permalink
Merge branch 'main' into update_triiger
Browse files Browse the repository at this point in the history
  • Loading branch information
dsikka authored Aug 29, 2024
2 parents 4542daa + 7cdcc9a commit 7a4c52b
Show file tree
Hide file tree
Showing 34 changed files with 845 additions and 139 deletions.
9 changes: 9 additions & 0 deletions .github/workflows/test-check.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,15 @@ jobs:
with:
python-version: '3.11'
- uses: actions/checkout@v2
- uses: actions/checkout@v2
with:
repository: "neuralmagic/compressed-tensors"
path: "compressed-tensors"
ref: ${{needs.test-setup.outputs.branch}}
- name: "⚙️ Install compressed-tensors dependencies"
run: pip3 install -U pip && pip3 install setuptools compressed-tensors/
- name: "Clean compressed-tensors directory"
run: rm -r compressed-tensors/
- name: "⚙️ Install dependencies"
run: pip3 install .[dev]
- name: "🔬 Running base tests"
Expand Down
170 changes: 170 additions & 0 deletions examples/quantization_kv_cache/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
# `fp8` Weight, Activation, and KV Cache Quantization

`llmcompressor` now supports quantizing weights, activations, and KV cache to `fp8` for memory savings and inference acceleration with `vllm`.

> `fp8` computation is supported on NVIDIA GPUs with compute capability > 8.9 (Ada Lovelace, Hopper).
## Installation

To get started, install llmcompressor from source as this feature is new:

```bash
pip install git+https://github.com/vllm-project/llm-compressor.git@cb98f34d4ec9dd175e6995d12fb02dec39c6f27a
```

## Quickstart

The example includes an end-to-end script for applying the quantization algorithm:

```bash
python3 llama3_fp8_kv_example.py
```

The resulting model `Meta-Llama-3-8B-Instruct-FP8-KV` is ready to be loaded into vLLM.

## Code Walkthrough

Let's walk through the main steps of the quantization process:

1. Load model
2. Prepare calibration data
3. Apply quantization
4. Evaluate and save the model

### 1. Load Model

Load the model using `SparseAutoModelForCausalLM`:

```python
from llmcompressor.transformers import SparseAutoModelForCausalLM
from transformers import AutoTokenizer

MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
```

### 2. Prepare Calibration Data

Prepare the calibration data using the `ultrachat` dataset:

```python
from datasets import load_dataset

DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))

def process_and_tokenize(example):
text = tokenizer.apply_chat_template(example["messages"], tokenize=False)
return tokenizer(text, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)

ds = ds.map(process_and_tokenize, remove_columns=ds.column_names)
```

### 3. Apply Quantization

Configure and apply the FP8 quantization for weights, activations, and KV cache.
Notice the new `kv_cache_scheme` section:

```python
from llmcompressor.transformers import oneshot

recipe = """
quant_stage:
quant_modifiers:
QuantizationModifier:
ignore: ["lm_head"]
config_groups:
group_0:
weights:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
input_activations:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
targets: ["Linear"]
kv_cache_scheme:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
"""

oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)
```

### 4. Evaluate and Save the Model

Test the quantized model with a sample generation:

```python
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
```

Save the quantized model:

```python
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
```

For running the model in vLLM, make sure to specify the `kv_cache_dtype="fp8"` argument to enable quantization of the kv cache, and thus usage of your calibrated scales.

## Evaluating Accuracy

To evaluate the accuracy of your quantized model:

1. Install `vllm` and `lm-evaluation-harness`:

```bash
pip install "vllm>=0.5.5" lm_eval==0.4.3
```

2. Run an evaluation (e.g., on GSM-8K):

```bash
MODEL=$PWD/Meta-Llama-3-8B-Instruct-FP8-KV
lm_eval \
--model vllm \
--model_args pretrained=$MODEL,kv_cache_dtype=fp8,add_bos_token=True \
--tasks gsm8k --num_fewshot 5 --batch_size auto
```

```
vllm (pretrained=Meta-Llama-3-8B-Instruct-FP8-KV,kv_cache_dtype=fp8,add_bos_token=True), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: auto
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.7748|± |0.0115|
| | |strict-match | 5|exact_match|↑ |0.7763|± |0.0115|
```

Note: Include `add_bos_token=True` as quantized models can be sensitive to the presence of the `bos` token.

## Questions or Feature Requests?

Please open an issue on `vllm-project/llm-compressor`.
95 changes: 95 additions & 0 deletions examples/quantization_kv_cache/llama3_fp8_kv_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
from datasets import load_dataset
from transformers import AutoTokenizer

from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot

# Select model and load it.
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# Select calibration dataset.
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"

# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))


def process_and_tokenize(example):
text = tokenizer.apply_chat_template(example["messages"], tokenize=False)
return tokenizer(
text,
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)


ds = ds.map(process_and_tokenize, remove_columns=ds.column_names)

# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per-tensor scales
# * quantize the activations to fp8 with per-tensor scales
# * quantize the kv cache to fp8 with per-tensor scales
recipe = """
quant_stage:
quant_modifiers:
QuantizationModifier:
ignore: ["lm_head"]
config_groups:
group_0:
weights:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
input_activations:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
targets: ["Linear"]
kv_cache_scheme:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
"""

# Apply algorithms.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)

# Confirm generations of the quantized model look sane.
print("\n\n")
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")

# Save to disk compressed.
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
11 changes: 5 additions & 6 deletions examples/quantization_w8a8_fp8/gemma2_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,22 +7,21 @@

# 1) Load model.
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto")
MODEL_ID, device_map="auto", torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# 2) Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per channel via ptq
# * quantize the activations to fp8 with dynamic per token
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
)

# 3) Apply quantization and save in compressed-tensors format.
OUTPUT_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
oneshot(model=model,
recipe=recipe,
output_dir=OUTPUT_DIR,
tokenizer=tokenizer)
oneshot(model=model, recipe=recipe, output_dir=OUTPUT_DIR, tokenizer=tokenizer)

# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
Expand Down
7 changes: 5 additions & 2 deletions examples/quantization_w8a8_int8/gemma2_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,10 @@
# 1) Select model and load it.
MODEL_ID = "google/gemma-2-2b-it"
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto",)
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# 2) Prepare calibration dataset.
Expand Down Expand Up @@ -62,7 +65,7 @@ def tokenize(sample):
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
output_dir=MODEL_ID.split("/")[1] + "-INT8"
output_dir=MODEL_ID.split("/")[1] + "-INT8",
)

# Confirm generations of the quantized model look sane.
Expand Down
5 changes: 2 additions & 3 deletions src/llmcompressor/modifiers/quantization/gptq/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,7 @@ class GPTQModifier(Modifier):
| symmetric: true
| strategy: "tensor"
| group_size: 128
| actorder: False
:param sequential_update: Whether or not to update weights sequentially by layer,
Expand Down Expand Up @@ -169,9 +170,7 @@ def on_initialize(self, state: "State", **kwargs) -> bool:
if not self.initialized_structure_:
self.on_initialize_structure(state, **kwargs)
if self.quantization_modifier_:
self.quantization_modifier_.initialize(
state, freeze_quantization=False, **kwargs
)
self.quantization_modifier_.initialize(state, **kwargs)
if not self.quantize:
raise ValueError("To use the GPTQModifier, quantization must be enabled.")

Expand Down
Loading

0 comments on commit 7a4c52b

Please sign in to comment.