Skip to content

Commit

Permalink
add deepseek example
Browse files Browse the repository at this point in the history
  • Loading branch information
dsikka committed Sep 12, 2024
1 parent d37b52d commit 77ca928
Show file tree
Hide file tree
Showing 2 changed files with 130 additions and 0 deletions.
121 changes: 121 additions & 0 deletions examples/quantizing_moe/deepseek_moe_w4a16.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
import torch
from datasets import load_dataset
from transformers import AutoTokenizer

from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map

# select a Mixture of Experts model for quantization
MODEL_ID = "deepseek-ai/DeepSeek-V2.5"

# adjust based off number of desired GPUs
# if not enough memory is available, some layers will automatically be offlaoded to cpu
device_map = calculate_offload_device_map(
MODEL_ID,
reserve_for_hessians=True,
num_gpus=2,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)

model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# Select calibration dataset.
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048


# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))


def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}


ds = ds.map(preprocess)


# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)


ds = ds.map(tokenize, remove_columns=ds.column_names)

# define a llmcompressor recipe for W416 quantization
# since the MoE gate layers are sensitive to quantization, we add them to the ignore
# list so they remain at full precision
recipe = "deepseek_recipe_w4a16.yaml"

SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16"


oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
save_compressed=True,
output_dir=SAVE_DIR,
)

# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(output[0]))
print("==========================================")


# Run the model on vLLM
try:
from vllm import LLM, SamplingParams

vllm_installed = True
except ImportError:
vllm_installed = False

if vllm_installed:
print("vLLM installed, running using vLLM")
sampling_params = SamplingParams(temperature=0.80, top_p=0.95)
llm = LLM(
model=SAVE_DIR,
tensor_parallel_size=2,
trust_remote_code=True,
max_model_len=1042,
dtype=torch.half,
)
prompts = [
"The capital of France is",
"The president of the US is",
"My name is",
]

outputs = llm.generate(prompts, sampling_params)
print("================= vLLM GENERATION ======================")
for output in outputs:
assert output
prompt = output.prompt
generated_text = output.outputs[0].text
print("PROMPT", prompt)
print("GENERATED TEXT", generated_text)
9 changes: 9 additions & 0 deletions examples/quantizing_moe/deepseek_recipe_w4a16.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
quant_stage:
quant_modifiers:
GPTQModifier:
sequential_update: true
ignore: [lm_head, "re:.*mlp.gate$"]
config_groups:
group_0:
weights: {num_bits: 4, type: int, symmetric: true, strategy: channel, dynamic: false}
targets: [Linear]

0 comments on commit 77ca928

Please sign in to comment.