Skip to content

Commit

Permalink
[ Docs ] gemma2 examples (#78)
Browse files Browse the repository at this point in the history
* gemma2

* remove spurious change

* revert

* revert llama-3 changes
  • Loading branch information
robertgshaw2-redhat authored Aug 12, 2024
1 parent 919a0a1 commit 2ab6ae5
Show file tree
Hide file tree
Showing 2 changed files with 105 additions and 0 deletions.
32 changes: 32 additions & 0 deletions examples/quantization_w8a8_fp8/gemma2_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
from transformers import AutoTokenizer

from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot

MODEL_ID = "google/gemma-2-27b-it"

# 1) Load model.
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# 2) Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per channel via ptq
# * quantize the activations to fp8 with dynamic per token
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])

# 3) Apply quantization and save in compressed-tensors format.
OUTPUT_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
oneshot(model=model,
recipe=recipe,
output_dir=OUTPUT_DIR,
tokenizer=tokenizer)

# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(output[0]))
print("==========================================")
73 changes: 73 additions & 0 deletions examples/quantization_w8a8_int8/gemma2_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
from datasets import load_dataset
from transformers import AutoTokenizer

from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot

# 1) Select model and load it.
MODEL_ID = "google/gemma-2-2b-it"
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto",)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# 2) Prepare calibration dataset.
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"

# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))


def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}


ds = ds.map(preprocess)


# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)


ds = ds.map(tokenize, remove_columns=ds.column_names)

# 3) Select quantization algorithms. In this case, we:
# * quantize the weights to int8 with GPTQ (static per channel)
# * quantize the activations to int8 (dynamic per token)
# Note: set sequential_update: true in the recipe to reduce memory
recipe = GPTQModifier(targets="Linear", scheme="W8A8", ignore=["lm_head"])

# 4) Apply quantization and save to disk compressed.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
output_dir=MODEL_ID.split("/")[1] + "-INT8"
)

# Confirm generations of the quantized model look sane.
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=20)
print(tokenizer.decode(output[0]))
print("==========================================")

0 comments on commit 2ab6ae5

Please sign in to comment.