Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Reconfigure workload generator for predefined synthetic patterns #771

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 0 additions & 8 deletions benchmarks/generator/config/completion-len-config.json

This file was deleted.

Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 8,
"mean": 169,
"noise": 0.1,
"period_len_ms": 300000,
"only_rise": false
}
7 changes: 7 additions & 0 deletions benchmarks/generator/config/examples/prompt-len-config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 15,
"mean": 309,
"noise": 0.1,
"period_len_ms": 300000,
"only_rise": false
}
7 changes: 7 additions & 0 deletions benchmarks/generator/config/examples/traffic-config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 2,
"mean": 6,
"noise": 0.1,
"period_len_ms": 300000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 86,
"mean": 43,
"noise": 0.1,
"period_len_ms": 120000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 86,
"mean": 43,
"noise": 0.1,
"period_len_ms": 4230000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 7.1,
"mean": 43,
"noise": 0.1,
"period_len_ms": 120000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 7.1,
"mean": 43,
"noise": 0.1,
"period_len_ms": 4230000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 2048,
"mean": 1024,
"noise": 0.1,
"period_len_ms": 90000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 2048,
"mean": 1024,
"noise": 0.1,
"period_len_ms": 210000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 174,
"mean": 1024,
"noise": 0.1,
"period_len_ms": 90000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 174,
"mean": 1024,
"noise": 0.1,
"period_len_ms": 210000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 3.6,
"mean": 6,
"noise": 0.1,
"period_len_ms": 120000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 3.6,
"mean": 6,
"noise": 0.1,
"period_len_ms": 1200000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 0.6,
"mean": 6,
"noise": 0.1,
"period_len_ms": 120000,
"only_rise": false
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
{
"fluctuate": 0.6,
"mean": 6,
"noise": 0.1,
"period_len_ms": 1200000,
"only_rise": false
}
8 changes: 0 additions & 8 deletions benchmarks/generator/config/prompt-len-config.json

This file was deleted.

8 changes: 0 additions & 8 deletions benchmarks/generator/config/traffic-config.json

This file was deleted.

14 changes: 13 additions & 1 deletion benchmarks/generator/distribution.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,4 +84,16 @@ def to_fluctuate_pattern_config(config_type: str,
'omega': None,
'only_rise': False}
else:
raise ValueError(f"Unknown config type: {config_type}")
raise ValueError(f"Unknown config type: {config_type}")


def user_to_synthetic_config(user_config: Dict,
duration_ms: int,):
return {
'A': float(user_config['fluctuate']),
'B': float(user_config['mean']),
'sigma': float(user_config['noise']),
'period': duration_ms/float(user_config['period_len_ms']),
'omega': None,
'only_rise': user_config['only_rise'],
}
28 changes: 11 additions & 17 deletions benchmarks/generator/sample_request.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import random

import pandas as pd
import numpy as np

from typing import Tuple, Optional, List
from transformers import PreTrainedTokenizerBase
Expand Down Expand Up @@ -110,16 +111,8 @@ def sample_requests_len_range(
err_perc = initial_err_perc

while err_perc <= 1:
input_range = range(0, sys.maxsize)
output_range = range(0, sys.maxsize)
if input_len is not None:
input_range = (int(input_len * (1 - err_perc)), int(input_len * (1 + err_perc)))
else:
input_range = (0, sys.maxsize)
if output_len is not None:
output_range = (int(output_len * (1 - err_perc)), int(output_len * (1 + err_perc)))
else:
output_range = (0, sys.maxsize)
input_range = (int(input_len * (1 - err_perc)), int(input_len * (1 + err_perc))) if input_len else (0, sys.maxsize)
output_range = (int(output_len * (1 - err_perc)), int(output_len * (1 + err_perc))) if output_len else (0, sys.maxsize)
filtered = df[
(df["prompt_len"] >= input_range[0]) &
(df["prompt_len"] <= input_range[1]) &
Expand All @@ -139,13 +132,14 @@ def sample_requests_len_range(
logging.debug(f"Relax err_perc {err_perc} by {err_step} new err_perc {err_perc + err_step} input_range {input_range} output_range {output_range}")
err_perc += err_step

if err_perc >= 1:
logging.warn(f"No match found for request {i + 1} even after relaxing err_perc to {err_perc} fallback to random")
total_rows = len(df)
sample = df.iloc[random.randint(0, total_rows - 1)]
filtered_results.append({"prompt": sample["prompt"],
"prompt_length": sample["prompt_len"],
"output_length": sample["completion_len"]})
if err_perc >= 1:
df["distance"] = np.sqrt((df["prompt_len"] - input_len) ** 2 + (df["completion_len"] - output_len) ** 2)
closest_sample = df.nsmallest(1, "distance").iloc[0]
closest_input, closest_output = closest_sample["prompt_len"], closest_sample["completion_len"]
filtered_results.append({"prompt": closest_sample["prompt"],
"prompt_length": closest_sample["prompt_len"],
"output_length": closest_sample["completion_len"]})
logging.warn(f"No exact match found for request {i + 1}, target input/output lengths {input_len}/{output_len}, use closest QA pair input {closest_input} output {closest_output}.")

return filtered_results

Expand Down
17 changes: 11 additions & 6 deletions benchmarks/generator/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ def plot_workload(workload_name: str,
# Convert workload data to a DataFrame
data = []
for entry in workload:
timestamp_sec = entry["timestamp"] / 1000 # Convert ms to sec
timestamp_sec = int(entry["timestamp"] / 1000) # Convert ms to sec
num_requests = len(entry["requests"])
total_prompt_tokens = np.mean([req["prompt_length"] for req in entry["requests"]]) if entry["requests"] else 0
total_output_tokens = np.mean([req["output_length"] for req in entry["requests"]]) if entry["requests"] else 0
Expand All @@ -200,22 +200,27 @@ def plot_workload(workload_name: str,
df["time_bin"] = pd.cut(df["timestamp"], bins, labels=bins[:-1])

# Aggregate within each bin
binned_df = df.groupby("time_bin").sum()
# binned_df = df.groupby("time_bin").sum()
binned_df = df.groupby("time_bin").agg({
"num_requests": "sum",
"total_prompt_tokens": "mean",
"total_output_tokens": "mean"
})

# Convert index back to numeric
binned_df.index = binned_df.index.astype(float)

print(binned_df)
# Plotting
fig, (ax_qps, ax_input, ax_output) = plt.subplots(3, 1, figsize=(15, 12))
fig, (ax_qps, ax_input, ax_output) = plt.subplots(3, 1, figsize=(10, 8))

ax_qps.plot(binned_df.index, binned_df["num_requests"], label="Total Requests")
ax_input.plot(binned_df.index, binned_df["total_prompt_tokens"], label="Total Prompt Tokens")
ax_output.plot(binned_df.index, binned_df["total_output_tokens"], label="Total Output Tokens")

# Formatting plots
for ax, ylabel, title in zip([ax_qps, ax_input, ax_output],
["Requests per Second", "Prompt Token Count", "Output Token Count"],
["Total Requests Sent per Second", "Total Prompt Tokens per Second", "Total Output Tokens per Second"]):
["Requests per Minute", "Prompt Token Count", "Output Token Count"],
["Total Requests Sent per Minute", "Total Prompt Tokens per Minute", "Total Output Tokens per Minute"]):
ax.set_xlabel("Time (seconds)")
ax.set_ylabel(ylabel)
ax.set_title(title)
Expand Down
25 changes: 14 additions & 11 deletions benchmarks/generator/workload_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from distribution import (generate_poisson_dist,
generate_token_len_from_percentiles,
to_fluctuate_pattern_config,
user_to_synthetic_config,
)

from utils import (convert_to_stat_df,
Expand Down Expand Up @@ -51,7 +52,7 @@ def generate_from_internal_csv(prompt_file_path: str,
output_len_dist = []
rps_dist = []
for rps_config in rps_configs:
rps_segment = generate_poisson_dist(target = rps_config['mean_rps'], sample_size = rps_config['total_seconds'], generate_poisson_dist = 10)
rps_segment = generate_poisson_dist(target = rps_config['mean_rps'], sample_size = rps_config['total_seconds'], smooth_window_size = 10)
rps_dist.extend(rps_segment)
if internal_trace_type == "maas":
for config in input_len_configs:
Expand Down Expand Up @@ -146,7 +147,7 @@ def generate_constant(prompt_file_path: str,
num_requests=qps,
input_lens=[None] * qps,
output_lens=[None] * qps,
initial_err_perc=0.5,
initial_err_perc=0.1,
err_step=0.05
)
if concurrent_reqs: # Only add non-empty groups
Expand Down Expand Up @@ -240,8 +241,10 @@ def math_function(t, pattern_config, length, prev_value):
sharegpt_df = load_requests(dataset_path=prompt_file_path, tokenizer=tokenizer)
while t < length:
current_concurrency, previous_concurrency = math_function(t, qps_pattern_config, length, previous_concurrency)
current_input_len, previous_input_len = math_function(t, input_pattern_config, length, previous_input_len)
current_input_len, previous_input_len = math_function(t, input_pattern_config, length, previous_input_len)
current_output_len, previous_output_len = math_function(t, output_pattern_config, length, previous_output_len)
current_input_len = current_input_len if current_input_len > 0 else 1
current_output_len = current_output_len if current_output_len > 0 else 1
current_concurrency_pois = generate_poisson_dist(target = current_concurrency, sample_size = 1)
current_input_len_pois = generate_poisson_dist(target = current_input_len, sample_size = 1)
current_output_len_pois = generate_poisson_dist(target = current_output_len, sample_size = 1)
Expand Down Expand Up @@ -312,7 +315,7 @@ def generate_from_azure_csv(file_path: str,
num_requests=len(input_lens),
input_lens=input_lens,
output_lens=output_lens,
initial_err_perc=0.5,
initial_err_perc=0.1,
err_step=0.05
)

Expand Down Expand Up @@ -426,9 +429,9 @@ def pair_requests_with_prompts_round_robin(workload: List[List[Any]],
elif args.traffic_pattern_config and args.prompt_len_pattern_config and args.completion_len_pattern_config:
logging.info(f"Generating synthetic workload with traffic pattern config: {args.traffic_pattern_config}, prompt length pattern config: {args.prompt_len_pattern_config}, completion length pattern config: {args.completion_len_pattern_config}")
comp_pattern_type = f"synthetic_manual_config"
qps_pattern_config = load_config(args.traffic_pattern_config)
input_pattern_config = load_config(args.prompt_len_pattern_config)
output_pattern_config = load_config(args.completion_len_pattern_config)
qps_pattern_config = user_to_synthetic_config(user_config = load_config(args.traffic_pattern_config), duration_ms = args.duration_ms)
input_pattern_config = user_to_synthetic_config(user_config = load_config(args.prompt_len_pattern_config), duration_ms = args.duration_ms)
output_pattern_config = user_to_synthetic_config(user_config = load_config(args.completion_len_pattern_config), duration_ms = args.duration_ms)
logging.debug(f"qps_pattern_config {qps_pattern_config}")
logging.debug(f"input_pattern_config {input_pattern_config}")
logging.debug(f"output_pattern_config {output_pattern_config}")
Expand All @@ -451,7 +454,7 @@ def pair_requests_with_prompts_round_robin(workload: List[List[Any]],
interval_ms=args.interval_ms,
output_file=f"{args.output_dir}/{args.trace_type}",
to_jsonl=(args.output_format == "jsonl"),
)
)
elif args.trace_type == "internal":
generated_workload = generate_from_internal_csv(prompt_file_path=args.prompt_file,
duration_ms=args.duration_ms,
Expand All @@ -465,7 +468,7 @@ def pair_requests_with_prompts_round_robin(workload: List[List[Any]],
input_scale=args.input_scale,
output_scale=args.output_scale,
internal_trace_type=args.internal_trace_type,
)
)

elif args.trace_type == "azure":
generated_workload = generate_from_azure_csv(file_path=args.traffic_file,
Expand All @@ -485,5 +488,5 @@ def pair_requests_with_prompts_round_robin(workload: List[List[Any]],
plot_workload(
workload_name = workload_name,
workload = workload,
bin_size_sec = int(args.interval_ms/1000),
output_dir = f"./plot")
bin_size_sec = int(args.interval_ms/1000) * 60,
output_dir = f"{args.output_dir}")