Skip to content

Commit

Permalink
KNN done
Browse files Browse the repository at this point in the history
  • Loading branch information
vishnoitanuj committed Nov 6, 2018
1 parent 907cd6c commit 273c049
Show file tree
Hide file tree
Showing 2 changed files with 470 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
#Simple Linear Regression
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2,3]].values
y = dataset.iloc[:, 4].values

from sklearn.model_selection import train_test_split
X_train,X_test, y_train, y_test=train_test_split(X,y,test_size=0.25, random_state=0)

#Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)

#Fitting Logistic Regression
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5,metric = 'minkowski', p=2)
classifier.fit(X_train, y_train)

#Predicting the results
y_pred = classifier.predict(X_test)

#Making the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)


#Visualizing the training set results
from matplotlib.colors import ListedColormap
x_set, y_set = X_train, y_train
X1,X2 = np.meshgrid(np.arange(start = x_set[:, 0].min() -1, stop = x_set[:,0].max()+1, step=0.01),
np.arange(start = x_set[:, 1].min() -1, stop = x_set[:,1].max()+1, step=0.01))
plt.contourf(X1,X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red','green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i,j in enumerate(np.unique(y_set)):
plt.scatter(x_set[y_set == j,0], x_set[y_set == j,1],
c = ListedColormap(('red','green'))(i), label = j)
plt.title('Logistic Regression (Training Set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()


#Visualizing the test set results
from matplotlib.colors import ListedColormap
x_set, y_set = X_test, y_test
X1,X2 = np.meshgrid(np.arange(start = x_set[:, 0].min() -1, stop = x_set[:,0].max()+1, step=0.01),
np.arange(start = x_set[:, 1].min() -1, stop = x_set[:,1].max()+1, step=0.01))
plt.contourf(X1,X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red','green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i,j in enumerate(np.unique(y_set)):
plt.scatter(x_set[y_set == j,0], x_set[y_set == j,1],
c = ListedColormap(('red','green'))(i), label = j)
plt.title('Logistic Regression (Training Set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
Loading

0 comments on commit 273c049

Please sign in to comment.