-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
907cd6c
commit 273c049
Showing
2 changed files
with
470 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
#Simple Linear Regression | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
|
||
# Importing the dataset | ||
dataset = pd.read_csv('Social_Network_Ads.csv') | ||
X = dataset.iloc[:, [2,3]].values | ||
y = dataset.iloc[:, 4].values | ||
|
||
from sklearn.model_selection import train_test_split | ||
X_train,X_test, y_train, y_test=train_test_split(X,y,test_size=0.25, random_state=0) | ||
|
||
#Feature Scaling | ||
from sklearn.preprocessing import StandardScaler | ||
sc_X = StandardScaler() | ||
X_train = sc_X.fit_transform(X_train) | ||
X_test = sc_X.transform(X_test) | ||
|
||
#Fitting Logistic Regression | ||
from sklearn.neighbors import KNeighborsClassifier | ||
classifier = KNeighborsClassifier(n_neighbors = 5,metric = 'minkowski', p=2) | ||
classifier.fit(X_train, y_train) | ||
|
||
#Predicting the results | ||
y_pred = classifier.predict(X_test) | ||
|
||
#Making the confusion matrix | ||
from sklearn.metrics import confusion_matrix | ||
cm = confusion_matrix(y_test, y_pred) | ||
print(cm) | ||
|
||
|
||
#Visualizing the training set results | ||
from matplotlib.colors import ListedColormap | ||
x_set, y_set = X_train, y_train | ||
X1,X2 = np.meshgrid(np.arange(start = x_set[:, 0].min() -1, stop = x_set[:,0].max()+1, step=0.01), | ||
np.arange(start = x_set[:, 1].min() -1, stop = x_set[:,1].max()+1, step=0.01)) | ||
plt.contourf(X1,X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), | ||
alpha = 0.75, cmap = ListedColormap(('red','green'))) | ||
plt.xlim(X1.min(), X1.max()) | ||
plt.ylim(X2.min(), X2.max()) | ||
for i,j in enumerate(np.unique(y_set)): | ||
plt.scatter(x_set[y_set == j,0], x_set[y_set == j,1], | ||
c = ListedColormap(('red','green'))(i), label = j) | ||
plt.title('Logistic Regression (Training Set)') | ||
plt.xlabel('Age') | ||
plt.ylabel('Estimated Salary') | ||
plt.legend() | ||
plt.show() | ||
|
||
|
||
#Visualizing the test set results | ||
from matplotlib.colors import ListedColormap | ||
x_set, y_set = X_test, y_test | ||
X1,X2 = np.meshgrid(np.arange(start = x_set[:, 0].min() -1, stop = x_set[:,0].max()+1, step=0.01), | ||
np.arange(start = x_set[:, 1].min() -1, stop = x_set[:,1].max()+1, step=0.01)) | ||
plt.contourf(X1,X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), | ||
alpha = 0.75, cmap = ListedColormap(('red','green'))) | ||
plt.xlim(X1.min(), X1.max()) | ||
plt.ylim(X2.min(), X2.max()) | ||
for i,j in enumerate(np.unique(y_set)): | ||
plt.scatter(x_set[y_set == j,0], x_set[y_set == j,1], | ||
c = ListedColormap(('red','green'))(i), label = j) | ||
plt.title('Logistic Regression (Training Set)') | ||
plt.xlabel('Age') | ||
plt.ylabel('Estimated Salary') | ||
plt.legend() | ||
plt.show() |
Oops, something went wrong.