Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 17 additions & 7 deletions gpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,7 +149,7 @@ def _crop_block_size(self):
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]


def forward(self, idx,review_lens,target=None):
def forward(self, idx,question_lengths=None,answer_lengths=None,target=None):
device = idx.device
b, t = idx.size()
assert (
Expand All @@ -170,17 +170,27 @@ def forward(self, idx,review_lens,target=None):
x = self.transformer.ln_f(x)
# To finetune, want to calculate the loss only on the last token
if self.config.binary_classification_head:
logits = self.classification_head(torch.stack([x[i,review_lens[i]-1,:] for i in range(len(review_lens))],dim=0))
logits = self.classification_head(x[:,[-1],:])
# logits = self.classification_head(torch.stack([x[i,question_lengths[i]-1,:] for i in range(len(question_lengths))],dim=0))
if target is not None:
loss = F.binary_cross_entropy_with_logits(logits.squeeze(),target=target)
else:
loss = None
else:
logits = self.lm_head(torch.stack([x[i,[review_lens[i]-1],:] for i in range(len(review_lens))],dim=0))
# q_end = [question_lengths[i] - 1 for i in range(len(question_lengths))]
# a_end = [question_lengths[i]-1 + answer_lengths[i] for i in range(len(answer_lengths))]
# target = torch.stack([idx[i,q_end[i]+1:a_end[i]+1] for i in range(len(question_lengths))])
# logits = self.lm_head(torch.stack([x[i,q_end[i]:a_end[i],:] for i in range(len(question_lengths))],dim=0))
logits = self.lm_head(x[:,[-1],:])
loss = None
# print(f"Shape of logits: {logits.size()}, Target Size: {target.size()}")
if target is not None:
loss = F.cross_entropy(logits,target)
else:
loss = None
loss = F.cross_entropy(logits.squeeze(),target.squeeze())
# if torch.isnan(loss):
# print(f"Question End: {q_end}, Answer End: {a_end}")
# print(f"Loss : {loss} Input: {idx.size()}, Question Lengths:{question_lengths}, Answer Lengths: {answer_lengths}")
# # else:
# loss = None
return logits, loss, att_out

def configure_optimizers(self,weight_decay,learning_rate,betas,device_type):
Expand Down Expand Up @@ -273,7 +283,7 @@ def generate(self, text, max_new_tokens:int, temp:float=0.8, top_k:int=None,devi
idx = torch.tensor([idx],dtype=torch.long).to(device)
for _ in range(max_new_tokens):
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
logits, _,_ = self(idx_cond,review_lens=torch.tensor([idx_cond.size(1)]).to(device))
logits, _,_ = self(idx_cond,question_lengths=torch.tensor([idx_cond.size(1)]).to(device))
logits = logits[:,-1,:]/temp
# optionally crop the logits to only the top k options
if top_k is not None:
Expand Down
20 changes: 19 additions & 1 deletion gpt_utils.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@

import os
import torch
import tiktoken
from torch.nn.utils.rnn import pad_sequence


def dynamic_padding(data):
inputs = [item["input_ids"] for item in data]
labels = [item["label"] for item in data]
Expand All @@ -22,4 +24,20 @@ def start_recording(fname):
os.system(f"""(while true; do echo "$(date +%Y-%m-%d\\ %H:%M:%S), $(nvidia-smi --query-gpu=memory.used --format=csv,noheader)" >> {fname}; sleep 1; done) &""")

def stop_recording():
os.system("pkill -f 'nvidia-smi --query-gpu=memory.used'")
os.system("pkill -f 'nvidia-smi --query-gpu=memory.used'")

tokenizer = tiktoken.get_encoding("gpt2")

def dynamic_padding_squad(data):
context_question_ids = [tokenizer.encode(f"Context: {item['context']} Question: {item['question']} Answer:", allowed_special={"<|endoftext|>"}) for item in data]
answer_ids = [tokenizer.encode(item['answer'],allowed_special={"<|endoftext|>"}) for item in data]
cq_lens = torch.tensor([len(item) for item in context_question_ids])
input_ids = [a+b for a,b in zip(context_question_ids,answer_ids)]
input_ids = [torch.tensor(t) for t in input_ids]
input_ids_padded = pad_sequence(input_ids,batch_first=True,padding_value=0)
answer_ids = [torch.tensor(t) for t in answer_ids]
answer_ids_padded = pad_sequence(answer_ids,batch_first=True,padding_value=0)
answer_lens = torch.tensor([len(a) for a in answer_ids])
return {"input_ids": input_ids_padded, "question_lengths": cq_lens, "answer_ids": answer_ids_padded, "answer_lengths":answer_lens}


Loading