-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a903e06
commit 08da12c
Showing
1 changed file
with
309 additions
and
0 deletions.
There are no files selected for viewing
309 changes: 309 additions & 0 deletions
309
mitigation/federated_attribute_attack_result_per_speaker.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
import torch | ||
from torch.utils.data import DataLoader | ||
import torch.nn as nn | ||
import torch.multiprocessing | ||
from torch.optim.lr_scheduler import ReduceLROnPlateau | ||
from copy import deepcopy | ||
import pickle | ||
|
||
import numpy as np | ||
from pathlib import Path | ||
import pandas as pd | ||
|
||
import sys, os, pdb, pickle, argparse | ||
sys.path.append(os.path.join(str(Path(os.path.realpath(__file__)).parents[1]), 'model')) | ||
sys.path.append(os.path.join(str(Path(os.path.realpath(__file__)).parents[1]), 'utils')) | ||
|
||
from training_tools import setup_seed, result_summary | ||
from attack_model import attack_model | ||
|
||
emo_dict = {'neu': 0, 'hap': 1, 'sad': 2, 'ang': 3} | ||
affect_dict = {'low': 0, 'med': 1, 'high': 2} | ||
|
||
gender_dict = {'F': 0, 'M': 1} | ||
speaker_id_arr_dict = {'msp-improv': np.arange(0, 12, 1), | ||
'crema-d': np.arange(1001, 1092, 1), | ||
'iemocap': np.arange(0, 10, 1)} | ||
leak_layer_dict = {'full': ['w0', 'b0', 'w1', 'b1', 'w2', 'b2'], | ||
'first': ['w0', 'b0'], 'second': ['w1', 'b1'], 'last': ['w2', 'b2']} | ||
|
||
# define feature len mapping | ||
feature_len_dict = {'emobase': 988, 'ComParE': 6373, 'wav2vec': 9216, | ||
'apc': 512, 'distilhubert': 768, 'tera': 768, 'wav2vec2': 768, | ||
'decoar2': 768, 'cpc': 256, 'audio_albert': 768, | ||
'mockingjay': 768, 'npc': 512, 'vq_apc': 512, 'vq_wav2vec': 512} | ||
|
||
class WeightDataGenerator(): | ||
def __init__(self, dict_keys, data_dict = None): | ||
self.dict_keys = dict_keys | ||
self.data_dict = data_dict | ||
|
||
def __len__(self): | ||
return len(self.dict_keys) | ||
|
||
def __getitem__(self, idx): | ||
|
||
w0 = [] | ||
b0 = [] | ||
w1 = [] | ||
b1 = [] | ||
w2 = [] | ||
b2 = [] | ||
gender = [] | ||
|
||
data_file_str = self.dict_keys[idx] | ||
|
||
tmp_data = (self.data_dict[data_file_str]['w0'] - weight_norm_mean_dict['w0']) / (weight_norm_std_dict['w0'] + 0.00001) | ||
w0 = torch.from_numpy(np.ascontiguousarray(tmp_data)) | ||
tmp_data = (self.data_dict[data_file_str]['b0'] - weight_norm_mean_dict['b0']) / (weight_norm_std_dict['b0'] + 0.00001) | ||
b0 = torch.from_numpy(np.ascontiguousarray(tmp_data)) | ||
|
||
tmp_data = (self.data_dict[data_file_str]['w1'] - weight_norm_mean_dict['w1']) / (weight_norm_std_dict['w1'] + 0.00001) | ||
w1 = torch.from_numpy(np.ascontiguousarray(tmp_data)) | ||
tmp_data = (self.data_dict[data_file_str]['b1'] - weight_norm_mean_dict['b1']) / (weight_norm_std_dict['b1'] + 0.00001) | ||
b1 = torch.from_numpy(np.ascontiguousarray(tmp_data)) | ||
|
||
tmp_data = (self.data_dict[data_file_str]['w2'] - weight_norm_mean_dict['w2']) / (weight_norm_std_dict['w2'] + 0.00001) | ||
w2 = torch.from_numpy(np.ascontiguousarray(tmp_data)) | ||
tmp_data = (self.data_dict[data_file_str]['b2'] - weight_norm_mean_dict['b2']) / (weight_norm_std_dict['b2'] + 0.00001) | ||
b2 = torch.from_numpy(np.ascontiguousarray(tmp_data)) | ||
|
||
gender = gender_dict[self.data_dict[data_file_str]['gender']] | ||
return w0, w1, w2, b0, b1, b2, gender | ||
|
||
|
||
def run_one_epoch(data_loader): | ||
|
||
first_layer_model.eval() | ||
if args.leak_layer == 'second' or args.leak_layer == 'last' or args.leak_layer == 'fusion': | ||
second_layer_model.eval() | ||
last_layer_model.eval() | ||
step_outputs = [] | ||
|
||
# feature size from all layers, attack input | ||
first_layer_features = feature_len_dict[args.feature_type] * 256 | ||
second_layer_features = 256 * 128 | ||
last_layer_features = 128 * 4 | ||
total_features = first_layer_features + second_layer_features + last_layer_features | ||
|
||
for batch_idx, data_batch in enumerate(data_loader): | ||
w0, w1, w2, b0, b1, b2, y = data_batch | ||
w0, w1, w2 = w0.to(device), w1.to(device), w2.to(device) | ||
b0, b1, b2, y = b0.to(device), b1.to(device), b2.to(device), y.to(device) | ||
|
||
if args.leak_layer == 'fusion': | ||
logits0 = first_layer_model(w0.float().unsqueeze(dim=1), b0.float()) | ||
logits1 = second_layer_model(w1.float().unsqueeze(dim=1), b1.float()) | ||
logits2 = last_layer_model(w2.float().unsqueeze(dim=1), b2.float()) | ||
logits0, logits1, logits2 = torch.exp(logits0), torch.exp(logits1), torch.exp(logits2) | ||
|
||
final_logits = (first_layer_features/total_features)*logits0 | ||
final_logits += (second_layer_features/total_features)*logits1 | ||
final_logits += (last_layer_features/total_features)*logits2 | ||
del logits0, logits1, logits2 | ||
elif args.leak_layer == 'first': | ||
logits0 = first_layer_model(w0.float().unsqueeze(dim=1), b0.float()) | ||
final_logits = logits0 | ||
del logits0 | ||
elif args.leak_layer == 'second': | ||
logits1 = second_layer_model(w1.float().unsqueeze(dim=1), b1.float()) | ||
final_logits = logits1 | ||
del logits1 | ||
elif args.leak_layer == 'last': | ||
logits2 = last_layer_model(w2.float().unsqueeze(dim=1), b2.float()) | ||
final_logits = logits2 | ||
del logits2 | ||
|
||
final_logits = torch.exp(final_logits) | ||
prediction = np.argmax(np.mean(final_logits.detach().cpu().numpy(), axis=0)) | ||
del data_batch | ||
torch.cuda.empty_cache() | ||
return prediction | ||
|
||
if __name__ == '__main__': | ||
|
||
torch.cuda.empty_cache() | ||
torch.multiprocessing.set_sharing_strategy('file_system') | ||
|
||
# argument parser | ||
parser = argparse.ArgumentParser(add_help=False) | ||
|
||
parser.add_argument('--dataset', default='iemocap') | ||
parser.add_argument('--adv_dataset', default='msp-improv_crema-d') | ||
parser.add_argument('--feature_type', default='apc') | ||
parser.add_argument('--learning_rate', default=0.0005) | ||
parser.add_argument('--batch_size', default=20) | ||
parser.add_argument('--use_gpu', default=True) | ||
parser.add_argument('--num_epochs', default=200) | ||
parser.add_argument('--local_epochs', default=1) | ||
parser.add_argument('--norm', default='znorm') | ||
parser.add_argument('--device', default='1') | ||
parser.add_argument('--model_type', default='fed_avg') | ||
parser.add_argument('--pred', default='emotion') | ||
parser.add_argument('--dropout', default=0.2) | ||
parser.add_argument('--leak_layer', default='fusion') | ||
parser.add_argument('--num_sample', default=5) | ||
parser.add_argument('--attack_dropout', default=0.2) | ||
parser.add_argument('--privacy_budget', default=None) | ||
parser.add_argument('--save_dir', default='/media/data/projects/speech-privacy') | ||
args = parser.parse_args() | ||
|
||
setup_seed(8) | ||
torch.manual_seed(8) | ||
pred = 'affect' if args.pred == 'arousal' or args.pred == 'valence' else 'emotion' | ||
|
||
save_result_df = pd.DataFrame() | ||
device = torch.device("cuda:"+str(args.device)) if torch.cuda.is_available() else "cpu" | ||
if torch.cuda.is_available(): print('GPU available, use GPU') | ||
|
||
model_setting_str = 'local_epoch_'+str(args.local_epochs) if args.model_type == 'fed_avg' else 'local_epoch_1' | ||
model_setting_str += '_dropout_' + str(args.dropout).replace('.', '') | ||
model_setting_str += '_lr_' + str(args.learning_rate)[2:] | ||
|
||
weight_file_list = [] | ||
weight_norm_mean_dict, weight_norm_std_dict = {}, {} | ||
weight_sum, weight_sum_square = {}, {} | ||
for key in ['w0', 'w1', 'w2', 'b0', 'b1', 'b2']: | ||
weight_norm_mean_dict[key], weight_norm_std_dict[key] = [], [] | ||
weight_sum[key] = 0 | ||
weight_sum_square[key] = 0 | ||
|
||
shadow_training_sample_size = 0 | ||
for shadow_idx in range(5): | ||
for epoch in range(int(args.num_epochs)): | ||
adv_federated_model_result_path = Path(args.save_dir).joinpath('tmp_model_params', args.model_type, args.pred, args.feature_type, args.adv_dataset, model_setting_str, 'fold'+str(int(shadow_idx+1))) | ||
weight_file_str = str(adv_federated_model_result_path.joinpath('gradient_hist_'+str(epoch)+'.pkl')) | ||
weight_file_list.append(weight_file_str) | ||
if epoch % 20 == 0: | ||
print('reading shadow model %d, epoch %d' % (shadow_idx, epoch)) | ||
with open(weight_file_str, 'rb') as f: | ||
adv_fed_weight_hist_dict = pickle.load(f) | ||
for speaker_id in adv_fed_weight_hist_dict: | ||
gradients = adv_fed_weight_hist_dict[speaker_id]['gradient'] | ||
shadow_training_sample_size += 1 | ||
|
||
weight_sum['w0'] += gradients[0] | ||
weight_sum['b0'] += gradients[1] | ||
weight_sum_square['w0'] += gradients[0]**2 | ||
weight_sum_square['b0'] += gradients[1]**2 | ||
|
||
weight_sum['w1'] += gradients[2] | ||
weight_sum['b1'] += gradients[3] | ||
weight_sum_square['w1'] += gradients[2]**2 | ||
weight_sum_square['b1'] += gradients[3]**2 | ||
|
||
weight_sum['w2'] += gradients[4] | ||
weight_sum['b2'] += gradients[5] | ||
weight_sum_square['w2'] += gradients[4]**2 | ||
weight_sum_square['b2'] += gradients[5]**2 | ||
|
||
for key in leak_layer_dict['full']: | ||
weight_norm_mean_dict[key] = weight_sum[key] / shadow_training_sample_size | ||
tmp_data = weight_sum_square[key] / shadow_training_sample_size - weight_norm_mean_dict[key]**2 | ||
weight_norm_std_dict[key] = np.sqrt(tmp_data) | ||
|
||
# load the evaluation model | ||
attack_dropout_str = '' if float(args.attack_dropout) == 0.2 else '_attack_dropout_' + str(args.attack_dropout).replace('.', '') | ||
first_layer_model = attack_model('first', args.feature_type) | ||
first_layer_model = first_layer_model.to(device) | ||
attack_model_path = Path(os.path.realpath(__file__)).parents[1].joinpath('results', 'attack', 'first', args.model_type, args.feature_type, model_setting_str+attack_dropout_str, 'private_' + str(args.dataset) + '.pt') | ||
first_layer_model.load_state_dict(torch.load(str(attack_model_path), map_location=device)) | ||
|
||
if args.leak_layer == 'second' or args.leak_layer == 'fusion': | ||
second_layer_model = attack_model('second', args.feature_type) | ||
second_layer_model = second_layer_model.to(device) | ||
attack_model_path = Path(os.path.realpath(__file__)).parents[1].joinpath('results', 'attack', 'second', args.model_type, args.feature_type, model_setting_str+attack_dropout_str, 'private_' + str(args.dataset) + '.pt') | ||
second_layer_model.load_state_dict(torch.load(str(attack_model_path), map_location=device)) | ||
|
||
if args.leak_layer == 'last' or args.leak_layer == 'fusion': | ||
last_layer_model = attack_model('last', args.feature_type) | ||
last_layer_model = last_layer_model.to(device) | ||
attack_model_path = Path(os.path.realpath(__file__)).parents[1].joinpath('results', 'attack', 'last', args.model_type, args.feature_type, model_setting_str+attack_dropout_str, 'private_' + str(args.dataset) + '.pt') | ||
last_layer_model.load_state_dict(torch.load(str(attack_model_path), map_location=device)) | ||
|
||
# we evaluate the attacker performance on service provider training | ||
if args.privacy_budget: | ||
model_setting_str += '_udp_' + str(args.privacy_budget) | ||
|
||
for fold_idx in range(0, 5): | ||
test_data_dict = {} | ||
for epoch in range(int(args.num_epochs)): | ||
torch.cuda.empty_cache() | ||
save_row_str = 'fold'+str(int(fold_idx+1)) | ||
row_df = pd.DataFrame(index=[save_row_str]) | ||
|
||
# Model related | ||
federated_model_result_path = Path(args.save_dir).joinpath('federated_model_params', args.model_type, args.pred, args.feature_type, args.dataset, model_setting_str, 'fold'+str(int(fold_idx+1))) | ||
weight_file_str = str(federated_model_result_path.joinpath('gradient_hist_'+str(epoch)+'.pkl')) | ||
|
||
with open(weight_file_str, 'rb') as f: | ||
test_fed_weight_hist_dict = pickle.load(f) | ||
for speaker_id in test_fed_weight_hist_dict: | ||
# pdb.set_trace() | ||
gradients = test_fed_weight_hist_dict[speaker_id]['gradient'] | ||
if speaker_id not in test_data_dict: | ||
test_data_dict[speaker_id] = {} | ||
|
||
test_data_dict[speaker_id][str(fold_idx)+'_'+str(epoch)] = {} | ||
test_data_dict[speaker_id][str(fold_idx)+'_'+str(epoch)]['w0'] = gradients[0] | ||
test_data_dict[speaker_id][str(fold_idx)+'_'+str(epoch)]['b0'] = gradients[1] | ||
test_data_dict[speaker_id][str(fold_idx)+'_'+str(epoch)]['w1'] = gradients[2] | ||
test_data_dict[speaker_id][str(fold_idx)+'_'+str(epoch)]['b1'] = gradients[3] | ||
test_data_dict[speaker_id][str(fold_idx)+'_'+str(epoch)]['w2'] = gradients[4] | ||
test_data_dict[speaker_id][str(fold_idx)+'_'+str(epoch)]['b2'] = gradients[5] | ||
test_data_dict[speaker_id][str(fold_idx)+'_'+str(epoch)]['gender'] = test_fed_weight_hist_dict[speaker_id]['gender'] | ||
|
||
results_dict = {} | ||
predictions, truths = [], [] | ||
|
||
for speaker_id in test_data_dict: | ||
predictions_per_speaker, truths_per_speaker = [], [] | ||
for idx_trial in range(10): | ||
speaker_dict = {} | ||
key_list = list(test_data_dict[speaker_id]) | ||
num_sample = int(args.num_sample) if len(key_list) > int(args.num_sample) else len(key_list) | ||
np.random.seed(idx_trial) | ||
idx_array = np.random.choice(range(len(key_list)), num_sample, replace=False) | ||
speaker_dict[idx_array[0]] = deepcopy(test_data_dict[speaker_id][key_list[idx_array[0]]]) | ||
gender = test_data_dict[speaker_id][key_list[idx_array[0]]]['gender'] | ||
if num_sample > 1: | ||
for idx in idx_array[1:]: | ||
key = key_list[idx] | ||
speaker_dict[idx_array[0]]['w0'] += test_data_dict[speaker_id][key]['w0'] | ||
speaker_dict[idx_array[0]]['b0'] += test_data_dict[speaker_id][key]['b0'] | ||
speaker_dict[idx_array[0]]['w1'] += test_data_dict[speaker_id][key]['w1'] | ||
speaker_dict[idx_array[0]]['b1'] += test_data_dict[speaker_id][key]['b1'] | ||
speaker_dict[idx_array[0]]['w2'] += test_data_dict[speaker_id][key]['w2'] | ||
speaker_dict[idx_array[0]]['b2'] += test_data_dict[speaker_id][key]['b2'] | ||
|
||
speaker_dict[idx_array[0]]['w0'] = speaker_dict[idx_array[0]]['w0'] / num_sample | ||
speaker_dict[idx_array[0]]['b0'] = speaker_dict[idx_array[0]]['b0'] / num_sample | ||
speaker_dict[idx_array[0]]['w1'] = speaker_dict[idx_array[0]]['w1'] / num_sample | ||
speaker_dict[idx_array[0]]['b1'] = speaker_dict[idx_array[0]]['b1'] / num_sample | ||
speaker_dict[idx_array[0]]['w2'] = speaker_dict[idx_array[0]]['w2'] / num_sample | ||
speaker_dict[idx_array[0]]['b2'] = speaker_dict[idx_array[0]]['b2'] / num_sample | ||
|
||
dataset_test = WeightDataGenerator(list(speaker_dict.keys()), speaker_dict) | ||
test_loader = DataLoader(dataset_test, batch_size=20, num_workers=0, shuffle=False) | ||
prediction = run_one_epoch(test_loader) | ||
|
||
predictions.append(prediction) | ||
predictions_per_speaker.append(prediction) | ||
truths.append(gender_dict[gender]) | ||
truths_per_speaker.append(gender_dict[gender]) | ||
del dataset_test, test_loader | ||
|
||
step_outputs = [] | ||
step_outputs.append({'loss': 0, 'pred': predictions, 'truth': truths}) | ||
test_result = result_summary(step_outputs, mode='test', epoch=0) | ||
row_df['acc'], row_df['uar'] = test_result['acc'], test_result['uar'] | ||
save_result_df = pd.concat([save_result_df, row_df]) | ||
|
||
row_df = pd.DataFrame(index=['average']) | ||
row_df['acc'], row_df['uar'] = np.mean(save_result_df['acc']), np.mean(save_result_df['uar']) | ||
save_result_df = pd.concat([save_result_df, row_df]) | ||
|
||
attack_model_result_csv_path = Path(os.path.realpath(__file__)).parents[1].joinpath('results', 'attack_by_client', args.leak_layer, args.model_type, args.feature_type, model_setting_str, str(args.num_sample)) | ||
Path.mkdir(attack_model_result_csv_path, parents=True, exist_ok=True) | ||
save_result_df.to_csv(str(attack_model_result_csv_path.joinpath('private_' + str(args.dataset) + '_result.csv'))) | ||
|