Skip to content

uek-1/puffpastry

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

63 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

puffpastry

crates.io docs.rs

puffpastry is a very basic feedforward neuron network library with a focus on parity with mathematical representations. It can be used to create and train simple models.

Usage

puffpastry is used very similarly to keras - stack layers and fit to training data.

Learning XOR

let mut model : Model<f64> = Model::new(Loss::MeanSquaredError);

// Dense::from_size(input_neurons, output_neurons, activation) -> Dense
model.push_layer(Dense::from_size(2, 2, Activation::Sigmoid));
model.push_layer(Dense::from_size(2, 1, Activation::None));


let train_inputs = vec![
    tensor!([[0.0], [0.0]]),
    tensor!([[1.0], [0.0]]),
    tensor!([[0.0], [1.0]]),
    tensor!([[1.0], [1.0]]),
];

let train_outputs = vec![
    tensor!([[0.0]]),
    tensor!([[1.0]]),
    tensor!([[1.0]]),
    tensor!([[0.0]]),
];

// fit(&mut self, inputs, outputs, epochs, learning_rate) -> Result
model.fit(train_inputs, train_outputs, 100, 1.2).unwrap();  

// evaluate(&self, input: Tensor) -> Result<Tensor>
model.evaluate(&tensor!([[1.0], [0.0]]).unwrap();
// stdout: Tensor {shape: [1], data: [0.9179620463347642]}

Features

Activation functions: [softmax, relu, sigmoid, linear]
Loss functions: [categorical cross entropy, mean squared error]
Layers: [dense, conv2d, maxpool2d, flatten]

Roadmap

  1. Improve convolution layer performance
  2. Make variations more explicit i.e. CategoricalCrossentropy vs ClippedCategoricalCrossEntropy
  3. Documentation
  4. Add pptimizers, weight initializers
  5. Add more losses, layers, metrics

Releases

No releases published

Packages

No packages published

Languages