Skip to content

Commit

Permalink
Automated File Generation from Docs Notebook Changes (#1143)
Browse files Browse the repository at this point in the history
Co-authored-by: joshreini1 <[email protected]>
  • Loading branch information
github-actions[bot] and joshreini1 authored May 17, 2024
1 parent 05f7e74 commit 0c1d745
Show file tree
Hide file tree
Showing 4 changed files with 314 additions and 423 deletions.
24 changes: 10 additions & 14 deletions docs/trulens_eval/all_tools.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
"metadata": {},
"outputs": [],
"source": [
"# ! pip install trulens_eval openai langchain chromadb langchainhub bs4 tiktoken"
"# ! pip install trulens_eval openai langchain langchain-openai faiss-cpu bs4 tiktoken"
]
},
{
Expand Down Expand Up @@ -58,17 +58,13 @@
"# Imports main tools:\n",
"from trulens_eval import TruChain, Tru\n",
"tru = Tru()\n",
"tru.reset_database()\n",
"\n",
"# Imports from LangChain to build app\n",
"import bs4\n",
"from langchain import hub\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.document_loaders import WebBaseLoader\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import StrOutputParser\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.vectorstores import Chroma\n",
"from langchain_core.runnables import RunnablePassthrough"
]
},
Expand Down Expand Up @@ -110,17 +106,17 @@
"metadata": {},
"outputs": [],
"source": [
"text_splitter = RecursiveCharacterTextSplitter(\n",
" chunk_size=1000,\n",
" chunk_overlap=200\n",
")\n",
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"splits = text_splitter.split_documents(docs)\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"vectorstore = Chroma.from_documents(\n",
" documents=splits,\n",
" embedding=OpenAIEmbeddings()\n",
")"
"from langchain_community.vectorstores import FAISS\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"\n",
"\n",
"text_splitter = RecursiveCharacterTextSplitter()\n",
"documents = text_splitter.split_documents(docs)\n",
"vectorstore = FAISS.from_documents(documents, embeddings)"
]
},
{
Expand Down
Loading

0 comments on commit 0c1d745

Please sign in to comment.