Skip to content

theblackcat102/H5Record

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

H5Record

codecov PyPI version

Large dataset ( > 100G, <= 1T) storage format for Pytorch (wip)

Support python 3

pip install h5record

Why?

  • Writing large dataset is still a wild west in pytorch. Approaches seen in the wild include:

    • large directory with lots of small files : slow IO when complex file is fetched, deserialized frequently
    • database approach : depend on what kind of database engine used, usually multi-process read is not supported
    • the above method scale non linear in terms of data - storage size
  • TFRecord solved the above problems well ( multiprocess fetch, (de)compression ), fast serialization ( protobuf )

  • However TFRecord port does not support data size evaluation (used frequently by Dataloader ), no index level access available ( important for data evaluation or verification )

H5Record aim to tackle TFRecord problems by compressing the dataset into HDF5 file with an easy to use interface through predefined interfaces ( String, Image, Sequences, Integer).

Some advantage of using H5Record

  • Support multi-process read

  • Relatively simple to use and low technical debt

  • Support compression/de-compression on the fly

  • Quick load to memory if required

Simple usage

pip install h5record
  1. Sentence Similarity
from h5record import H5Dataset, Float, String

schema = (
    String(name='sentence1'),
    String(name='sentence2'),
    Float(name='label')
)
data = [
    ['Sent 1.', 'Sent 2', 0.1],
    ['Sent 3', 'Sent 4', 0.2],
]

def pair_iter():
    for row in data:
        yield {
            'sentence1': row[0],
            'sentence2': row[1],
            'label': row[2]
        }

dataset = H5Dataset(schema, './question_pair.h5', pair_iter())
for idx in range(len(dataset)):
    print(dataset[idx])

Note

Due to in progress development, this package should be use in care in storage with FAT, FAT-32 format

Comparison between different compression algorithm

No chunking is used

Compression Type File size Read speed row/second
no compression 2.0G 2084.55 it/s
lzf 1.7G 1496.14 it/s
gzip 1.1G 843.78 it/s

benchmarked in i7-9700, 1TB NVMe SSD

If you are interested to learn more feel free to checkout the note as well!

About

Large dataset storage format for Pytorch

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages