Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Minor] Support MistralModel and MistralForCausalLM #135

Merged
merged 1 commit into from
Mar 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 5 additions & 8 deletions pyvene/models/intervenable_modelcard.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
from .constants import *
from .llama.modelings_intervenable_llama import *
from .mistral.modellings_intervenable_mistral import *
from .gpt2.modelings_intervenable_gpt2 import *
from .gpt_neo.modelings_intervenable_gpt_neo import *
from .gpt_neox.modelings_intervenable_gpt_neox import *
from .mlp.modelings_intervenable_mlp import *
from .gru.modelings_intervenable_gru import *
from .blip.modelings_intervenable_blip import *
from .blip.modelings_intervenable_blip_itm import *
from .backpack_gpt2.modelings_intervenable_backpack_gpt2 import *


Expand All @@ -21,7 +21,6 @@

import transformers.models as hf_models
from .blip.modelings_blip import BlipWrapper
from .blip.modelings_blip_itm import BlipITMWrapper
from .mlp.modelings_mlp import MLPModel, MLPForClassification
from .gru.modelings_gru import GRUModel, GRULMHeadModel, GRUForClassification
from .backpack_gpt2.modelings_backpack_gpt2 import BackpackGPT2LMHeadModel
Expand All @@ -35,17 +34,16 @@
type_to_module_mapping = {
hf_models.gpt2.modeling_gpt2.GPT2Model: gpt2_type_to_module_mapping,
hf_models.gpt2.modeling_gpt2.GPT2LMHeadModel: gpt2_lm_type_to_module_mapping,
hf_models.gpt2.modeling_gpt2.GPT2ForSequenceClassification: gpt2_classifier_type_to_module_mapping,
hf_models.llama.modeling_llama.LlamaModel: llama_type_to_module_mapping,
hf_models.llama.modeling_llama.LlamaForCausalLM: llama_lm_type_to_module_mapping,
hf_models.gpt_neo.modeling_gpt_neo.GPTNeoModel: gpt_neo_type_to_module_mapping,
hf_models.gpt_neo.modeling_gpt_neo.GPTNeoForCausalLM: gpt_neo_lm_type_to_module_mapping,
hf_models.gpt_neox.modeling_gpt_neox.GPTNeoXModel: gpt_neox_type_to_module_mapping,
hf_models.gpt_neox.modeling_gpt_neox.GPTNeoXForCausalLM: gpt_neox_lm_type_to_module_mapping,
hf_models.mistral.modeling_mistral.MistralModel: mistral_type_to_module_mapping,
hf_models.mistral.modeling_mistral.MistralForCausalLM: mistral_lm_type_to_module_mapping,
hf_models.blip.modeling_blip.BlipForQuestionAnswering: blip_type_to_module_mapping,
hf_models.blip.modeling_blip.BlipForImageTextRetrieval: blip_itm_type_to_module_mapping,
BlipWrapper: blip_wrapper_type_to_module_mapping,
BlipITMWrapper: blip_itm_wrapper_type_to_module_mapping,
MLPModel: mlp_type_to_module_mapping,
MLPForClassification: mlp_classifier_type_to_module_mapping,
GRUModel: gru_type_to_module_mapping,
Expand All @@ -59,17 +57,16 @@
type_to_dimension_mapping = {
hf_models.gpt2.modeling_gpt2.GPT2Model: gpt2_type_to_dimension_mapping,
hf_models.gpt2.modeling_gpt2.GPT2LMHeadModel: gpt2_lm_type_to_dimension_mapping,
hf_models.gpt2.modeling_gpt2.GPT2ForSequenceClassification: gpt2_classifier_type_to_dimension_mapping,
hf_models.llama.modeling_llama.LlamaModel: llama_type_to_dimension_mapping,
hf_models.llama.modeling_llama.LlamaForCausalLM: llama_lm_type_to_dimension_mapping,
hf_models.gpt_neo.modeling_gpt_neo.GPTNeoModel: gpt_neo_type_to_dimension_mapping,
hf_models.gpt_neo.modeling_gpt_neo.GPTNeoForCausalLM: gpt_neo_lm_type_to_dimension_mapping,
hf_models.gpt_neox.modeling_gpt_neox.GPTNeoXModel: gpt_neox_type_to_dimension_mapping,
hf_models.gpt_neox.modeling_gpt_neox.GPTNeoXForCausalLM: gpt_neox_lm_type_to_dimension_mapping,
hf_models.mistral.modeling_mistral.MistralModel: mistral_type_to_dimension_mapping,
hf_models.mistral.modeling_mistral.MistralForCausalLM: mistral_lm_type_to_dimension_mapping,
hf_models.blip.modeling_blip.BlipForQuestionAnswering: blip_type_to_dimension_mapping,
hf_models.blip.modeling_blip.BlipForImageTextRetrieval: blip_itm_type_to_dimension_mapping,
BlipWrapper: blip_wrapper_type_to_dimension_mapping,
BlipITMWrapper: blip_itm_wrapper_type_to_dimension_mapping,
MLPModel: mlp_type_to_dimension_mapping,
MLPForClassification: mlp_classifier_type_to_dimension_mapping,
GRUModel: gru_type_to_dimension_mapping,
Expand Down
Empty file.
78 changes: 78 additions & 0 deletions pyvene/models/mistral/modellings_intervenable_mistral.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
"""
Each modeling file in this library is a mapping between
abstract naming of intervention anchor points and actual
model module defined in the huggingface library.

We also want to let the intervention library know how to
config the dimensions of intervention based on model config
defined in the huggingface library.
"""


import torch
from ..constants import *


mistral_type_to_module_mapping = {
"block_input": ("layers[%s]", CONST_INPUT_HOOK),
"block_output": ("layers[%s]", CONST_OUTPUT_HOOK),
"mlp_activation": ("layers[%s].mlp.act_fn", CONST_OUTPUT_HOOK),
"mlp_output": ("layers[%s].mlp", CONST_OUTPUT_HOOK),
"mlp_input": ("layers[%s].mlp", CONST_INPUT_HOOK),
"attention_value_output": ("layers[%s].self_attn.o_proj", CONST_INPUT_HOOK),
"head_attention_value_output": ("layers[%s].self_attn.o_proj", CONST_INPUT_HOOK),
"attention_output": ("layers[%s].self_attn", CONST_OUTPUT_HOOK),
"attention_input": ("layers[%s].self_attn", CONST_INPUT_HOOK),
"query_output": ("layers[%s].self_attn.q_proj", CONST_OUTPUT_HOOK),
"key_output": ("layers[%s].self_attn.k_proj", CONST_OUTPUT_HOOK),
"value_output": ("layers[%s].self_attn.v_proj", CONST_OUTPUT_HOOK),
"head_query_output": ("layers[%s].self_attn.q_proj", CONST_OUTPUT_HOOK),
"head_key_output": ("layers[%s].self_attn.k_proj", CONST_OUTPUT_HOOK),
"head_value_output": ("layers[%s].self_attn.v_proj", CONST_OUTPUT_HOOK),
}


mistral_type_to_dimension_mapping = {
"block_input": ("hidden_size",),
"block_output": ("hidden_size",),
"mlp_activation": ("intermediate_size",),
"mlp_output": ("hidden_size",),
"mlp_input": ("hidden_size",),
"attention_value_output": ("hidden_size",),
"head_attention_value_output": ("hidden_size/num_attention_heads",),
"attention_output": ("hidden_size",),
"attention_input": ("hidden_size",),
"query_output": ("hidden_size",),
"key_output": ("hidden_size",),
"value_output": ("hidden_size",),
"head_query_output": ("hidden_size/num_attention_heads",),
"head_key_output": ("hidden_size/num_attention_heads",),
"head_value_output": ("hidden_size/num_attention_heads",),
}


"""llama model with LM head"""
mistral_lm_type_to_module_mapping = {}
for k, v in mistral_type_to_module_mapping.items():
mistral_lm_type_to_module_mapping[k] = (f"model.{v[0]}", v[1])


mistral_lm_type_to_dimension_mapping = mistral_type_to_dimension_mapping


def create_mistral(
name="mistralai/Mistral-7B-v0.1", cache_dir=None
):
"""Creates a Mistral Causal LM model, config, and tokenizer from the given name and revision"""
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig

config = AutoConfig.from_pretrained(name, cache_dir=cache_dir)
tokenizer = AutoTokenizer.from_pretrained(name, cache_dir=cache_dir)
llama = AutoModelForCausalLM.from_pretrained(
name,
config=config,
cache_dir=cache_dir,
torch_dtype=torch.bfloat16, # save memory
)
print("loaded model")
return config, tokenizer, llama
Loading