-
Notifications
You must be signed in to change notification settings - Fork 72
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Minor] Fixed sampling generating counterfactuals bug in causal_model…
….py and introduced tests for causal model code;, updated DAS main introduction to match new causal model schematic; created notebook for MQNLI dataset exploring DAS on a nested heirarchical causal structure
- Loading branch information
Showing
9 changed files
with
2,317 additions
and
209 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
import unittest | ||
import random | ||
import torch | ||
from pyvene import CausalModel | ||
random.seed(42) | ||
|
||
|
||
class CasualModelTestCase(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(self): | ||
print("=== Test Suite: CausalModelTestCase ===") | ||
self.variables = ['A', 'B', 'C'] | ||
self.values = { | ||
'A': [False, True], | ||
'B': [False, True], | ||
'C': [False, True] | ||
} | ||
|
||
self.parents = { | ||
'A': [], | ||
'B': [], | ||
'C': ['A', 'B'] | ||
} | ||
|
||
self.functions = { | ||
"A": lambda: True, | ||
"B": lambda: True, | ||
"C": lambda a, b: a and b | ||
} | ||
|
||
self.causal_model = CausalModel( | ||
self.variables, | ||
self.values, | ||
self.parents, | ||
self.functions | ||
) | ||
|
||
def test_initialization(self): | ||
inputs = ['A', 'B'] | ||
outputs = ['C'] | ||
timesteps = { | ||
'A': 0, | ||
'B': 0, | ||
'C': 1 | ||
} | ||
equivalence_classes = { | ||
'C': { | ||
False: [ | ||
{'A': False, 'B': False}, | ||
{'A': False, 'B': True}, | ||
{'A': True, 'B': False} | ||
], | ||
True: [ | ||
{'A': True, 'B': True} | ||
] | ||
} | ||
} | ||
|
||
self.assertEqual(set(self.causal_model.inputs), set(inputs)) | ||
self.assertEqual(set(self.causal_model.outputs), set(outputs)) | ||
self.assertEqual(self.causal_model.timesteps, timesteps) | ||
self.assertEqual(self.causal_model.equiv_classes, equivalence_classes) | ||
|
||
def test_run_forward(self): | ||
# test run forward with default values (A and B set to True) | ||
self.assertEqual( | ||
self.causal_model.run_forward(), | ||
{'A': True, 'B': True, 'C': True} | ||
) | ||
|
||
# test run forward on all possible input values | ||
for a in [False, True]: | ||
for b in [False, True]: | ||
input_setting = { | ||
'A': a, | ||
'B': b | ||
} | ||
output_setting = { | ||
'A': a, | ||
'B': b, | ||
'C': a and b | ||
} | ||
self.assertEqual(self.causal_model.run_forward(input_setting), output_setting) | ||
|
||
# test run forward on fully specified setting | ||
output_setting = {'A': False, 'B': False, 'C': True} | ||
self.assertEqual(self.causal_model.run_forward(output_setting), output_setting) | ||
|
||
def test_run_interchange(self): | ||
# interchange intervention on input | ||
base = {'A': True, 'B': False} | ||
source = {'A': False, 'B': True} | ||
self.assertEqual(self.causal_model.run_forward(base)['C'], False) | ||
self.assertEqual(self.causal_model.run_forward(source)['C'], False) | ||
self.assertEqual( | ||
self.causal_model.run_interchange(base, {'B': source})['C'], | ||
True | ||
) | ||
|
||
# interchange intervention on output | ||
base = {'A': False, 'B': False} | ||
source = {'A': True, 'B': True} | ||
self.assertEqual(self.causal_model.run_forward(base)['C'], False) | ||
self.assertEqual( | ||
self.causal_model.run_interchange(base, {'B': source})['C'], | ||
False | ||
) | ||
self.assertEqual( | ||
self.causal_model.run_interchange(base, {'C': source})['C'], | ||
True | ||
) | ||
|
||
def test_sample_input_tree_balanced(self): | ||
# NOTE: not quite sure how to test a function with random behavior | ||
# right now, fixing seed and assuming approximate behavior | ||
# (taking balanced to be less than 30-70 split) | ||
|
||
K = 100 | ||
# test sampling by output value | ||
outputs = [] | ||
for _ in range(K): | ||
sample = self.causal_model.sample_input_tree_balanced() | ||
output = self.causal_model.run_forward(sample) | ||
outputs.append(output['C']) | ||
self.assertGreaterEqual(sum(outputs), 30) | ||
self.assertLessEqual(sum(outputs), 70) | ||
|
||
# test sampling by input value | ||
inputs = [] | ||
for _ in range(K): | ||
sample = self.causal_model.sample_input_tree_balanced() | ||
inputs.append(sample['A']) | ||
self.assertGreaterEqual(sum(outputs), 30) | ||
self.assertLessEqual(sum(outputs), 70) | ||
|
||
def test_generate_factual_dataset(self): | ||
def sampler(): | ||
return {'A': False, 'B': False} | ||
|
||
size = 4 | ||
factual_dataset = self.causal_model.generate_factual_dataset( | ||
size=size, | ||
sampler=sampler, | ||
return_tensors=False | ||
) | ||
self.assertEqual(len(factual_dataset), size) | ||
|
||
self.assertEqual(factual_dataset[0]['input_ids'], {'A': False, 'B': False}) | ||
self.assertEqual(factual_dataset[0]['labels']['C'], False) | ||
|
||
factual_dataset_tensors = self.causal_model.generate_factual_dataset( | ||
size=size, | ||
sampler=sampler, | ||
return_tensors=True | ||
) | ||
self.assertEqual(len(factual_dataset_tensors), size) | ||
X = torch.stack([example['input_ids'] for example in factual_dataset_tensors]) | ||
y = torch.stack([example['labels'] for example in factual_dataset_tensors]) | ||
self.assertEqual(X.shape, (size, 2)) | ||
self.assertEqual(y.shape, (size, 1)) | ||
self.assertTrue(torch.equal(X[0], torch.tensor([0., 0.]))) | ||
self.assertTrue(torch.equal(y[0], torch.tensor([0.]))) | ||
|
||
def test_generate_counterfactual_dataset(self): | ||
def sampler(*args, **kwargs): | ||
if kwargs.get('output_var', None): | ||
return {'A': True, 'B': True} | ||
|
||
return {'A': True, 'B': False} | ||
|
||
def intervention_sampler(*args, **kwargs): | ||
return {'B': True} | ||
|
||
def intervention_id(*args, **kwargs): | ||
return 0 | ||
|
||
size = 4 | ||
counterfactual_dataset = self.causal_model.generate_counterfactual_dataset( | ||
size=size, | ||
batch_size=1, | ||
intervention_id=intervention_id, | ||
sampler=sampler, | ||
intervention_sampler=intervention_sampler, | ||
return_tensors=False | ||
) | ||
self.assertEqual(len(counterfactual_dataset), size) | ||
example = counterfactual_dataset[0] | ||
self.assertEqual(example['input_ids'], {'A': True, 'B': False}) | ||
self.assertEqual(example['source_input_ids'][0]['B'], True) | ||
self.assertEqual(example['intervention_id'], [0]) | ||
self.assertEqual(example['base_labels']['C'], False) # T and F | ||
self.assertEqual(example['labels']['C'], True) # T and T | ||
|
||
|
||
def suite(): | ||
suite = unittest.TestSuite() | ||
suite.addTest(CasualModelTestCase("test_initialization")) | ||
suite.addTest(CasualModelTestCase("test_run_forward")) | ||
suite.addTest(CasualModelTestCase("test_run_interchange")) | ||
suite.addTest(CasualModelTestCase("test_sample_input_tree_balanced")) | ||
suite.addTest(CasualModelTestCase("test_generate_factual_dataset")) | ||
suite.addTest(CasualModelTestCase("test_generate_counterfactual_dataset")) | ||
return suite | ||
|
||
|
||
if __name__ == "__main__": | ||
runner = unittest.TextTestRunner() | ||
runner.run(suite()) |
Oops, something went wrong.