Skip to content

Commit

Permalink
Merge pull request #190 from stanfordnlp/gemma2
Browse files Browse the repository at this point in the history
[P2] Add Gemma 2 model
  • Loading branch information
explanare authored Oct 8, 2024
2 parents 2242266 + b7addfc commit 31d3986
Show file tree
Hide file tree
Showing 3 changed files with 94 additions and 0 deletions.
Empty file.
89 changes: 89 additions & 0 deletions pyvene/models/gemma2/modelings_intervenable_gemma2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
"""
Each modeling file in this library is a mapping between
abstract naming of intervention anchor points and actual
model module defined in the huggingface library.
We also want to let the intervention library know how to
config the dimensions of intervention based on model config
defined in the huggingface library.
"""


import torch
from ..constants import *


gemma2_type_to_module_mapping = {
"block_input": ("layers[%s]", CONST_INPUT_HOOK),
"block_output": ("layers[%s]", CONST_OUTPUT_HOOK),
"mlp_activation": ("layers[%s].mlp.act_fn", CONST_OUTPUT_HOOK),
"mlp_output": ("layers[%s].mlp", CONST_OUTPUT_HOOK),
"mlp_input": ("layers[%s].mlp", CONST_INPUT_HOOK),
"attention_value_output": ("layers[%s].self_attn.o_proj", CONST_INPUT_HOOK),
"head_attention_value_output": ("layers[%s].self_attn.o_proj", CONST_INPUT_HOOK, (split_head_and_permute, "n_head")),
"attention_output": ("layers[%s].self_attn", CONST_OUTPUT_HOOK),
"attention_input": ("layers[%s].self_attn", CONST_INPUT_HOOK),
"query_output": ("layers[%s].self_attn.q_proj", CONST_OUTPUT_HOOK),
"key_output": ("layers[%s].self_attn.k_proj", CONST_OUTPUT_HOOK),
"value_output": ("layers[%s].self_attn.v_proj", CONST_OUTPUT_HOOK),
"head_query_output": ("layers[%s].self_attn.q_proj", CONST_OUTPUT_HOOK, (split_head_and_permute, "n_head")),
"head_key_output": ("layers[%s].self_attn.k_proj", CONST_OUTPUT_HOOK, (split_head_and_permute, "n_kv_head")),
"head_value_output": ("layers[%s].self_attn.v_proj", CONST_OUTPUT_HOOK, (split_head_and_permute, "n_kv_head")),
}


gemma2_type_to_dimension_mapping = {
"n_head": ("num_attention_heads",),
"n_kv_head": ("num_key_value_heads",),
"block_input": ("hidden_size",),
"block_output": ("hidden_size",),
"mlp_activation": ("intermediate_size",),
"mlp_output": ("hidden_size",),
"mlp_input": ("hidden_size",),
"attention_value_output": ("hidden_size",),
"head_attention_value_output": ("head_dim",),
"attention_output": ("hidden_size",),
"attention_input": ("hidden_size",),
"query_output": ("hidden_size",),
"key_output": ("hidden_size",),
"value_output": ("hidden_size",),
"head_query_output": ("head_dim",),
"head_key_output": ("head_dim",),
"head_value_output": ("hhead_dim",),
}


"""gemma2 model with LM head"""
gemma2_lm_type_to_module_mapping = {}
for k, v in gemma2_type_to_module_mapping.items():
gemma2_lm_type_to_module_mapping[k] = (f"model.{v[0]}", ) + v[1:]


gemma2_lm_type_to_dimension_mapping = gemma2_type_to_dimension_mapping


"""gemma2 model with classifier head"""
gemma2_classifier_type_to_module_mapping = {}
for k, v in gemma2_type_to_module_mapping.items():
gemma2_classifier_type_to_module_mapping[k] = (f"model.{v[0]}", ) + v[1:]


gemma2_classifier_type_to_dimension_mapping = gemma2_type_to_dimension_mapping


def create_gemma2(
name="google/gemma2-2b", cache_dir=None, dtype=torch.bfloat16
):
"""Creates a Causal LM model, config, and tokenizer from the given name and revision"""
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer

config = AutoConfig.from_pretrained(name, cache_dir=cache_dir)
tokenizer = AutoTokenizer.from_pretrained(name, cache_dir=cache_dir)
gemma = AutoModelForCausalLM.from_pretrained(
name,
config=config,
cache_dir=cache_dir,
torch_dtype=dtype,
)
print("loaded model")
return config, tokenizer, gemma
5 changes: 5 additions & 0 deletions pyvene/models/intervenable_modelcard.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
from .llama.modelings_intervenable_llama import *
from .mistral.modellings_intervenable_mistral import *
from .gemma.modelings_intervenable_gemma import *
from .gemma2.modelings_intervenable_gemma2 import *
from .gpt2.modelings_intervenable_gpt2 import *
from .gpt_neo.modelings_intervenable_gpt_neo import *
from .gpt_neox.modelings_intervenable_gpt_neox import *
Expand Down Expand Up @@ -58,6 +59,8 @@
hf_models.gemma.modeling_gemma.GemmaModel: gemma_type_to_module_mapping,
hf_models.gemma.modeling_gemma.GemmaForCausalLM: gemma_lm_type_to_module_mapping,
hf_models.gemma.modeling_gemma.GemmaForSequenceClassification: gemma_classifier_type_to_module_mapping,
hf_models.gemma2.modeling_gemma2.Gemma2Model: gemma2_type_to_module_mapping,
hf_models.gemma2.modeling_gemma2.Gemma2ForCausalLM: gemma2_lm_type_to_module_mapping,
hf_models.olmo.modeling_olmo.OlmoModel: olmo_type_to_module_mapping,
hf_models.olmo.modeling_olmo.OlmoForCausalLM: olmo_lm_type_to_module_mapping,
hf_models.blip.modeling_blip.BlipForQuestionAnswering: blip_type_to_module_mapping,
Expand Down Expand Up @@ -91,6 +94,8 @@
hf_models.gemma.modeling_gemma.GemmaModel: gemma_type_to_dimension_mapping,
hf_models.gemma.modeling_gemma.GemmaForCausalLM: gemma_lm_type_to_dimension_mapping,
hf_models.gemma.modeling_gemma.GemmaForSequenceClassification: gemma_classifier_type_to_dimension_mapping,
hf_models.gemma2.modeling_gemma2.Gemma2Model: gemma2_type_to_dimension_mapping,
hf_models.gemma2.modeling_gemma2.Gemma2ForCausalLM: gemma2_lm_type_to_dimension_mapping,
hf_models.olmo.modeling_olmo.OlmoModel: olmo_type_to_dimension_mapping,
hf_models.olmo.modeling_olmo.OlmoForCausalLM: olmo_lm_type_to_dimension_mapping,
hf_models.blip.modeling_blip.BlipForQuestionAnswering: blip_type_to_dimension_mapping,
Expand Down

0 comments on commit 31d3986

Please sign in to comment.