Skip to content

splitio/python-api

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Split Python API

This API wrapper is designed to work with Split, the platform for controlled rollouts, serving features to your users via the Split feature flag to manage your complete customer experience.

For specific instructions on how to use Split Admin REST API refer to our official API documentation.

Full documentation on this Python wrapper is available in this link.

Using in Harness Mode

Starting with version 3.5.0, the Split API client supports operating in "harness mode" to interact with both Split and Harness APIs. This is required for usage in environments that have been migrated to Harness and want to use the new features. Operating not in harness mode will work as it did before with existing Split bearer tokens, but the deprecated endpoints mentioned below will not function.

For detailed information about Harness API endpoints, please refer to the official Harness API documentation.

Authentication in Harness Mode

Important: Harness mode requires a harness_token (Harness API key). Split API keys (apikey) are not supported in harness mode.

If your account has been migrated to Harness, you should create a new Harness API key to use with this client. The harness_token is used for both Split API endpoints and Harness-specific endpoints via the x-api-key header.

For non-migrated accounts that need to use Split API keys with Bearer authentication, use the standard (non-harness) mode instead.

Base URLs and Endpoints

  • Existing, non-deprecated Split endpoints continue to use the Split base URLs
  • New Harness-specific endpoints use the Harness base URL (https://app.harness.io/)

Deprecated Endpoints

The following Split endpoints are deprecated and cannot be used in harness mode:

  • /workspaces: POST, PATCH, DELETE, PUT verbs are deprecated
  • /apiKeys: POST verb for apiKeyType == 'admin' is deprecated
  • /users: all verbs are deprecated
  • /groups: all verbs are deprecated
  • /restrictions: all verbs are deprecated

Non-deprecated endpoints will continue to function as they did before the migration.

Basic Usage

To use the client in harness mode:

from splitapiclient.main import get_client

# Basic harness mode setup with required harness_token
client = get_client({
    'harness_mode': True,
    'harness_token': 'YOUR_HARNESS_TOKEN',  # Required: Harness API key
    'account_identifier': 'YOUR_HARNESS_ACCOUNT_ID'  # Required for Harness operations
})

# Include optional org_identifier and project_identifier
client = get_client({
    'harness_mode': True,
    'harness_token': 'YOUR_HARNESS_TOKEN',
    'account_identifier': 'YOUR_HARNESS_ACCOUNT_ID',
    'org_identifier': 'YOUR_ORG_ID',        # Optional: organization identifier
    'project_identifier': 'YOUR_PROJECT_ID' # Optional: project identifier
})

Working with Split Resources in Harness Mode

You can still access standard Split resources with some restrictions:

# List workspaces (read-only in harness mode)
for ws in client.workspaces.list():
    print(f"Workspace: {ws.name}, Id: {ws.id}")

# Find a specific workspace
ws = client.workspaces.find("Default")

# List environments in a workspace
for env in client.environments.list(ws.id):
    print(f"Environment: {env.name}, Id: {env.id}")

Working with Harness-specific Resources

Harness mode provides access to several Harness-specific resources through dedicated microclients:

  • token
  • harness_apikey
  • service_account
  • harness_user
  • harness_group
  • role
  • resource_group
  • role_assignment
  • harness_project

Basic example:

# Account identifier is required for all Harness operations
account_id = 'YOUR_ACCOUNT_IDENTIFIER'

# List all tokens (org_identifier and project_identifier are optional)
tokens = client.token.list(account_id)
for token in tokens:
    print(f"Token: {token.name}, ID: {token.id}")

# List service accounts with org and project identifiers
org_id = 'YOUR_ORG_IDENTIFIER'
project_id = 'YOUR_PROJECT_IDENTIFIER'
service_accounts = client.service_account.list(account_id, org_identifier=org_id, project_identifier=project_id)
for sa in service_accounts:
    print(f"Service Account: {sa.name}, ID: {sa.id}")

# If org_identifier and project_identifier are set at client initialization, you can omit them
client = get_client({
    'harness_mode': True,
    'harness_token': 'YOUR_HARNESS_TOKEN',
    'account_identifier': account_id,
    'org_identifier': org_id,
    'project_identifier': project_id
})

# Now you can call methods without specifying identifiers
service_accounts = client.service_account.list()  # Uses default identifiers
projects = client.harness_project.list()  # Uses default identifiers

For most creation, update, and delete endpoints for harness specific resources, you will need to pass through the JSON body directly.

Example:

# Create a new service account
sa_data = {
    'name': sa_name,
    'identifier': sa_identifier,
    'email': "[email protected]",
    'accountIdentifier': account_id,
    'description': 'Service account for test',
    'tags': {'test': 'test tag'}
}
        
new_sa = client.service_account.create(sa_data, account_id)
# Add a user to a group
client.harness_user.add_user_to_groups(user.id, [group.id], account_id)

Harness Groups

The harness_group.list() method supports an optional filterType parameter to filter groups:

# List all groups (default behavior)
all_groups = client.harness_group.list()

# List groups with filterType to exclude inherited groups
groups = client.harness_group.list(filterType='EXCLUDE_INHERITED_GROUPS')

# List groups with filterType and other optional parameters
groups = client.harness_group.list(
    account_identifier='YOUR_ACCOUNT_ID',
    org_identifier='YOUR_ORG_ID',
    project_identifier='YOUR_PROJECT_ID',
    filterType='INCLUDE_INHERITED_GROUPS'
)

Note: The filterType parameter is optional. When not provided (or set to None), it will be omitted from the API request. Valid values depend on the Harness API specification.

For detailed examples and API specifications for each resource, please refer to the Harness API documentation.

Setting Default Identifiers

To avoid specifying identifiers with every request, you can set default values when creating the client:

# Set default identifiers when creating the client
client = get_client({
    'harness_mode': True,
    'harness_token': 'YOUR_HARNESS_TOKEN',
    'account_identifier': 'YOUR_ACCOUNT_IDENTIFIER',  # Required
    'org_identifier': 'YOUR_ORG_IDENTIFIER',          # Optional
    'project_identifier': 'YOUR_PROJECT_IDENTIFIER'   # Optional
})

# Now you can make calls without specifying identifiers in each request
tokens = client.token.list()  # account_identifier is automatically included
projects = client.harness_project.list()  # account_identifier and org_identifier are automatically included (project_identifier is not used for projects endpoint)

Note on Optional Identifiers:

  • account_identifier is required for all Harness operations
  • org_identifier and project_identifier are optional and will be omitted from API requests if not provided
  • If org_identifier or project_identifier are not set, they will not appear in the URL at all (not even as empty parameters)
  • Important: The harness_project microclient does not support project_identifier as a query parameter. The projects endpoint only uses org_identifier (and account_identifier). Other microclients (service_account, token, role, etc.) do support project_identifier.
  • You can override default identifiers by passing them as parameters to individual method calls:
# Override default identifiers for a specific request
# Note: project_identifier is not used for harness_project endpoints
projects = client.harness_project.list(
    account_identifier='DIFFERENT_ACCOUNT_ID',
    org_identifier='DIFFERENT_ORG_ID'
)

# Use default identifiers but override only org_identifier
# Note: project_identifier is not used for harness_project endpoints
projects = client.harness_project.list(org_identifier='DIFFERENT_ORG_ID')

Quick Setup

Install the splitapiclient:

pip install splitapiclient

Import the client object and initialize connection using an Admin API Key:

from splitapiclient.main import get_client
client = get_client({'apikey': 'ADMIN API KEY'})

Enable optional logging:

import logging
logging.basicConfig(level=logging.DEBUG)

Standard Split API Usage

Workspaces

Fetch all workspaces:

for ws in client.workspaces.list():
    print("\nWorkspace:" + ws.name + ", Id: " + ws.id)

Find a specific workspace:

ws = client.workspaces.find("Defaults")
print("\nWorkspace:" + ws.name + ", Id: " + ws.id)

Environments

Fetch all Environments:

ws = client.workspaces.find("Defaults")
for env in client.environments.list(ws.id):
    print("\nEnvironment: " + env.name + ", Id: " + env.id)

Add new environment:

ws = client.workspaces.find("Defaults")
env = ws.add_environment({'name': 'new_environment', 'production': False})

Splits

Fetch all Splits:

ws = client.workspaces.find("Defaults")
for split in client.splits.list(ws.id):
    print("\nSplit: " + split.name + ", " + split._workspace_id)

Add new Split:

split = ws.add_split({'name': 'split_name', 'description': 'new UI feature'}, "user")
print(split.name)

Add tags:

split.associate_tags(['my_new_tag', 'another_new_tag'])

Add Split to environment:

ws = client.workspaces.find("Defaults")
split = client.splits.find("new_feature", ws.id) 
env = client.environments.find("Production", ws.id)
tr1 = treatment.Treatment({"name":"on","configurations":""})
tr2 = treatment.Treatment({"name":"off","configurations":""})
bk1 = bucket.Bucket({"treatment":"on","size":50})
bk2 = bucket.Bucket({"treatment":"off","size":50})
match = matcher.Matcher({"attribute":"group","type":"IN_LIST_STRING","strings":["employees"]})
cond = condition.Condition({'matchers':[match.export_dict()]})
rl = rule.Rule({'condition':cond.export_dict(), 'buckets':[bk1.export_dict(), bk2.export_dict()]})
defrl = default_rule.DefaultRule({"treatment":"off","size":100}) 
data={"treatments":[tr1.export_dict() ,tr2.export_dict()],"defaultTreatment":"off", "baselineTreatment": "off","rules":[rl.export_dict()],"defaultRule":[defrl.export_dict()], "comment": "adding split to production"}
splitdef = split.add_to_environment(env.id, data)

Kill Split:

ws = client.workspaces.find("Defaults")
env = client.environments.find("Production", ws.id)
splitDef = client.split_definitions.find("new_feature", env.id, ws.id)
splitDef.kill()

Restore Split:

splitDef.restore()

Fetch all Splits in an Environment:

ws = client.workspaces.find("Defaults")
env = client.environments.find("Production", ws.id)
for spDef in client.split_definitions.list(env.id, ws.id):
    print(spDef.name + str(spDef._default_rule))

Submit a Change request to update a Split definition:

splitDef = client.split_definitions.find("new_feature", env.id, ws.id)
definition= {"treatments":[ {"name":"on"},{"name":"off"}],
    "defaultTreatment":"off", "baselineTreatment": "off",
    "rules": [],
    "defaultRule":[{"treatment":"off","size":100}],"comment": "updating default rule"
}
splitDef.submit_change_request(definition, 'UPDATE', 'updating default rule', 'comment', ['[email protected]'], '')

Rule-Based Segments

Rule-based segments allow you to define audience segments using complex rule structures and exclusion logic. Added in version 3.5.1, they offer enhanced functionality for targeting users.

Fetch all Rule-Based Segments:

ws = client.workspaces.find("Defaults")
for segment in client.rule_based_segments.list(ws.id):
    print("\nRule-Based Segment: " + segment.name + ", " + segment.description)

Add new Rule-Based Segment:

segment_data = {
    'name': 'advanced_users',
    'description': 'Users who match advanced criteria'
}
rule_segment = ws.add_rule_based_segment(segment_data, "user")
print(rule_segment.name)

Add Rule-Based Segment to environment:

ws = client.workspaces.find("Defaults")
segment = client.rule_based_segments.find("advanced_users", ws.id)
env = client.environments.find("Production", ws.id)
segdef = segment.add_to_environment(env.id)

Remove Rule-Based Segment from environment:

ws = client.workspaces.find("Defaults")
segment = client.rule_based_segments.find("advanced_users", ws.id)
env = client.environments.find("Production", ws.id)
success = segment.remove_from_environment(env.id)

Remove Rule based segment from workspace

ws = client.workspaces.find("Defaults")
success = ws.delete_rule_based_segment("advanced_users")

Rule-Based Segment Structure

Rule-based segment definitions support multiple rule types and matching conditions:

# Examples of different matcher types
matchers = [
    # String matching
    {
        'type': 'IN_LIST_STRING',
        'attribute': 'device',
        'strings': ['mobile', 'tablet']
    },
    # Numeric comparisons
    {
        'type': 'GREATER_THAN_OR_EQUAL_NUMBER',
        'attribute': 'age',
        'number': 21
    },
    {
        'type': 'LESS_THAN_OR_EQUAL_NUMBER',
        'attribute': 'account_age_days',
        'number': 30
    },
    {
        'type': 'BETWEEN_NUMBER',
        'attribute': 'purchases',
        'between': {'from': 5, 'to': 20}
    },
    # Boolean conditions
    {
        'type': 'BOOLEAN',
        'attribute': 'subscribed',
        'bool': True
    },
    # Date/time matching
    {
        'type': 'ON_DATE',
        'attribute': 'sign_up_date',
        'date': 1623456789000  # timestamp in milliseconds
    },
    # Dependency on another split
    {
        'type': 'IN_SPLIT',
        'attribute': '',
        'depends': {'splitName': 'another_split', 'treatment': 'on'}
    }
]

# Multiple conditions using combiners
condition = {
    'combiner': 'AND',  # Can only be 'AND'
    'matchers': matchers
}

Update Rule-Based Segment definition with rules:

ws = client.workspaces.find("Defaults")
env = client.environments.find("Production", ws.id)
segdef = client.rule_based_segment_definitions.find("advanced_users", env.id, ws.id)

# Define rules that match users in a certain list
rules_data = {
    'rules': [
        {
            'condition': {
                'combiner': 'AND',
                'matchers': [
                    {
                        'type': 'GREATER_THAN_OR_EQUAL_NUMBER',
                        'attribute': 'age',
                        'number': 30
                    },
                    {
                        'type': 'BOOLEAN',
                        'attribute': 'completed_tutorials',
                        'bool': True
                    }
                ]
            }
        }
    ]
}

# Update the segment definition with the rules
updated_segdef = segdef.update(rules_data) # the workspace id is passed in from the find operation - so it's not needed here

Update Rule-Based Segment definition with excluded keys and excluded segments:

ws = client.workspaces.find("Defaults")
env = client.environments.find("Production", ws.id)
segdef = client.rule_based_segment_definitions.find("advanced_users", env.id, ws.id)

# Define rules and exclusion data
update_data = {
    'rules': [
        {
            'condition': {
                'combiner': 'AND',
                'matchers': [
                    {
                        'type': 'GREATER_THAN_OR_EQUAL_NUMBER',
                        'attribute': 'age',
                        'number': 30
                    }
                ]
            }
        }
    ],
    'excludedKeys': ['user1', 'user2', 'user3'],
    'excludedSegments': [
        {
            'name': 'beta_testers',
            'type': 'standard_segment'
        }
    ]
}

# Update the segment definition with rules and exclusions
updated_segdef = segdef.update(update_data)

Submit a Change request to update a Rule-Based Segment definition:

ws = client.workspaces.find("Defaults")
env = client.environments.find("Production", ws.id)
segdef = client.rule_based_segment_definitions.find("advanced_users", env.id, ws.id)

# New rules for the change request
rules = [
    {
        'condition': {
            'combiner': 'AND',
            'matchers': [
                {
                    'type': 'GREATER_THAN_OR_EQUAL_NUMBER',
                    'attribute': 'age',
                    'number': 25
                },
                {
                    'type': 'BOOLEAN',
                    'attribute': 'completed_tutorials',
                    'bool': True
                }
            ]
        }
    }
]

# Define excluded keys and segments for the change request
excluded_keys = ['user1', 'user2']
excluded_segments = [
    {
        'name': 'test_users',
        'type': 'rule_based_segment'
    }
]

# Submit change request with all parameters
segdef.submit_change_request(
    rules=rules,
    excluded_keys=excluded_keys,
    excluded_segments=excluded_segments,
    operation_type='UPDATE',
    title='Lower age threshold to 25',
    comment='Including more users in advanced segment',
    approvers=['[email protected]'],
    workspace_id=ws.id
)

List all change requests:

for cr in client.change_requests.list():
    if cr._split is not None:
        print(cr._id + ", " + cr._split['name'] + ", " + cr._title + ", " + str(cr._split['environment']['id'])) 
    if cr._segment is not None:
        print(cr._id + ", " + cr._segment['name'] + ", " + cr._title)

Approve specific change request:

for cr in client.change_requests.list():
    if cr._split['name'] == 'new_feature':
        cr.update_status("APPROVED", "done")

Users and Groups

Fetch all Active users:

for user in client.users.list('ACTIVE'):
    print(user.email + ", " + user._id) 

Invite new user:

group = client.groups.find('Administrators')
userData = {'email': '[email protected]', 'groups': [{'id': '', 'type': 'group'}]}
userData['groups'][0]['id'] = group._id
client.users.invite_user(userData)

Delete a pending invite:

for user in client.users.list('PENDING'):
    print(user.email + ", " + user._id + ", " + user._status)
    if user.email == '[email protected]': 
        client.users.delete(user._id)

Update user info:

data = {'name': 'new_name', 'email': '[email protected]', '2fa': False, 'status': 'ACTIVE'}
user = client.users.find('[email protected]')
user.update_user(user._id, data)

Fetch all Groups:

for group in client.groups.list():
    print(group._id + ", " + group._name)

Create Group:

client.groups.create_group({'name': 'new_group', 'description': ''})

Delete Group:

group = client.groups.find('new_group')
client.groups.delete_group(group._id)

Replace existing user group:

user = client.users.find('[email protected]')
group = client.groups.find('Administrators')
data = [{'op': 'replace', 'path': '/groups/0', 'value': {'id': '<groupId>', 'type': 'group'}}]
data[0]['value']['id'] = group._id
user.update_user_group(data)

Add user to new group

user = client.users.find('[email protected]')
group = client.groups.find('Administrators')
data = [{'op': 'add', 'path': '/groups/-', 'value': {'id': '<groupId>', 'type': 'group'}}]
data[0]['value']['id'] = group._id
user.update_user_group(data)

About Split

Commitment to Quality:

Split's APIs are in active development and are constantly tested for quality. Unit tests are developed for each wrapper based on the unique needs of that language, and integration tests, load and performance tests, and behavior consistency tests are running 24/7 via automated bots. In addition, monitoring instrumentation ensures that these wrappers behave under the expected parameters of memory, CPU, and I/O.

About Split:

Split is the leading platform for intelligent software delivery, helping businesses of all sizes deliver exceptional user experiences, and mitigate risk, by providing an easy, secure way to target features to customers. Companies like WePay, LendingTree and thredUP rely on Split to safely launch and test new features and derive insights on their use. Founded in 2015, Split's team comes from some of the most innovative enterprises in Silicon Valley, including Google, LinkedIn, Salesforce and Splunk. Split is based in Redwood City, California and backed by Accel Partners and Lightspeed Venture Partners. To learn more about Split, contact [email protected], or start a 14-day free trial at www.split.io/trial.

Try Split for Free:

Split is available as a 14-day free trial. To create an account, visit split.io/trial.

Learn more about Split:

Visit split.io/product for an overview of Split, or visit our documentation at docs.split.io for more detailed information.

System Status:

We use a status page to monitor the availability of Split's various services. You can check the current status at status.split.io.

About

Split public API for Python

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 7

Languages