Skip to content

spencerjolly/lasy

This branch is 55 commits ahead of, 115 commits behind LASY-org/lasy:development.

Repository files navigation

lasy

Warning: This library is currently in development, and it is, at this stage, only meant to be used/tested by developers. We plan on releasing the first version for general users (i.e. beta version) by summer 2023.

Overview

lasy is a Python library that facilitates the initialization of complex laser pulses, in simulations of laser-plasma interactions.

More specifically, lasy offers many ways to define complex laser pulses (e.g. from commonly-known analytical formulas, from experimental measurements, etc.) and offers pre-processing functionalities (e.g. propagation, re-normalization, geometry conversion). The laser field is then exported in a standardized file, that can be read by external simulation codes.

Documentation

LASY manipulates laser pulses, and operates on the laser envelope. In 3D (x,y,t) Cartesian coordinates, the definition used is:

E x ( x , y , t ) = Re ( E ( x , y , t ) e i ω 0 t p x )   E y ( x , y , t ) = Re ( E ( x , y , t ) e i ω 0 t p y )

where Re stands for real part, E x (resp. E y ) is the laser electric field in the x (resp. y) direction, E is the complex laser envelope stored and used in lasy, ω 0 = 2 π c / λ 0 is the angular frequency defined from the laser wavelength λ 0 and ( p x , p y ) is the (complex and normalized) polarization vector.

In cylindrical coordinates, the envelope is decomposed in N m azimuthal modes ( see Ref. [A. Lifschitz et al., J. Comp. Phys. 228.5: 1803-1814 (2009)]). Each mode is stored on a 2D grid (r,t), using the following definition:

E x ( r , θ , t ) = Re ( N m + 1 N m 1 E m ( r , t ) e i m θ e i ω 0 t p x )   E y ( r , θ , t ) = Re ( N m + 1 N m 1 E m ( r , t ) e i m θ e i ω 0 t p y ) .

Workflow

How to contribute

All contributions are welcome! For a new contribution, we use pull requests from forks. Below is a very rough summary, please have a look at the appropriate documentation at https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/about-forks and around.

First, setup your fork workflow (only once):

  • Fork the repo by clicking the Fork button on the top right, and follow the prompts. This will create your own (remote) copy of the main https://github.com/LASY-org/LASY repo, located at https://github.com/[yourusername]/LASY.
  • Make your local copy aware of your fork: from your local repository, do git remote add [some-name] https://github.com/[your username]/LASY. For [some-name] it can be convenient to use e.g. your username.

Then, for each contribution:

  • Get the last version of branch development from the main repo (e.g. git checkout development && git pull).
  • Create a new branch (e.g. git checkout -b my_contribution).
  • Do usual git add and git commit operations.
  • Push your branch to your own fork: git push -u [some-name] my_contribution
  • Whenever you're ready, open a PR from branch my_contribution on your fork to branch development on the main repo. Github typically suggests this very well.

Style conventions

  • Docstrings are written using the Numpy style.
  • Functions in utils/laser_utils.py only depend on standard types (Python & Numpy) and on the Grid class. That way, they are relatively stand-alone and can be used on different data structures. A simple Grid factory is provided for that purpose.
  • A PR should be open for any contribution: the description helps to explain the code and open dicussion.

Install

python3 -m pip install -v .

For tests, you need to have a few extra packages, such as pytest and openpmd-viewer installed:

python3 -m pip install -r tests/requirements.txt

Test

After successful installation, you can run the unit tests:

# Run all tests
python3 -m pytest tests/

# Run tests from a single file
python3 -m pytest tests/test_laser_profiles.py

# Run a single test (useful during debugging)
python3 -m pytest tests/test_laser_profiles.py::test_profile_gaussian_3d_cartesian

# Run all tests, do not capture "print" output and be verbose
python3 -m pytest -s -vvvv tests/

Creating Documentation

Install sphinx (https://www.sphinx-doc.org/en/master/usage/installation.html)

cd docs
python -m pip install -r requirements.txt
sphinx-build -b html source _build

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%