Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add substitution for functional linear #1266

Merged
merged 6 commits into from
Nov 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from torch import nn
import torch.nn.functional as F

from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
from model_compression_toolkit.core.common import BaseNode, Graph, BaseSubstitution
from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
from model_compression_toolkit.core.pytorch.constants import *
from model_compression_toolkit.logger import Logger


class FunctionalLinear(BaseSubstitution):
"""
Replace functional linear with Linear.
"""

def __init__(self):
"""
Matches: functional linear
"""
func_node = NodeOperationMatcher(F.linear)
super().__init__(matcher_instance=func_node)

def substitute(self,
graph: Graph,
func_node: FunctionalNode) -> Graph:
"""
Substitute functional.linear and its inputs with Linear.
Args:
graph: Graph we apply the substitution on.
node: node that match the pattern in the substitution init.

Returns:
Graph after applying the substitution.
"""

# Create new node of layer Linear
if 1 not in func_node.weights:
Logger.critical(f'Weight input missing for node {func_node.name}.') # pragma: no cover
# Extract index of kernel and bias according to tensor_input_allocs if they were input as kwargs. If
# they were input as args, use their fixed positions.
weight_index = func_node.tensor_input_allocs.index(KERNEL) if KERNEL in func_node.tensor_input_allocs else 1
bias_index = func_node.tensor_input_allocs.index(BIAS) if BIAS in func_node.tensor_input_allocs else 2
if weight_index not in func_node.weights:
Logger.critical(f'Mismatch between tensor_input_allocs and weight index in node {func_node.name}.') # pragma: no cover
weight = func_node.weights[weight_index]
bias = func_node.weights.get(bias_index)

framework_attr = {
IN_FEATURES: func_node.input_shape[0][-1],
OUT_FEATURES: func_node.output_shape[0][-1],
BIAS: bias is not None,
}

weights = {KERNEL: weight} if bias is None else {KERNEL: weight, BIAS: bias}

new_node = BaseNode(
name=func_node.name,
framework_attr=framework_attr,
input_shape=func_node.input_shape[0],
output_shape=func_node.output_shape,
weights=weights,
layer_class=nn.Linear,
has_activation=func_node.has_activation,
reuse=func_node.reuse,
reuse_group=func_node.reuse_group
)

graph.replace_node(func_node, new_node)
return graph
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,8 @@
FunctionalBatchNorm
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.functional_layer_norm import \
FunctionalLayerNorm
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.functional_linear import \
FunctionalLinear
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.linear_collapsing import \
pytorch_linear_collapsing
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.multi_head_attention_decomposition \
Expand Down Expand Up @@ -266,6 +268,7 @@ def get_substitutions_prepare_graph(self, fw_info: FrameworkInfo = None) -> List
FunctionalConvSubstitution(fw_info),
FunctionalBatchNorm(),
FunctionalLayerNorm(),
FunctionalLinear(),
RemoveIdentity()]

def get_substitutions_pre_statistics_collection(self,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import torch
import torch.nn.functional as F
from tests.pytorch_tests.model_tests.base_pytorch_test import BasePytorchTest
from model_compression_toolkit.core.pytorch.pytorch_device_config import get_working_device

"""
This test checks the linear functional substitution function.
"""


class LinearFNet(torch.nn.Module):
def __init__(self):
super(LinearFNet, self).__init__()
self.fc1 = torch.nn.Linear(in_features=1000, out_features=100, bias=False)
self.fc2 = torch.nn.Linear(in_features=100, out_features=50, bias=True)
self.fc3 = torch.nn.Linear(in_features=50, out_features=10, bias=False)

def forward(self, x):
x = F.linear(x, self.fc1.weight, self.fc1.bias)
x = F.linear(x, bias=self.fc2.bias, weight=self.fc2.weight)
y = F.linear(x, self.fc3.weight, bias=None)
return y


class LinearFNetTest(BasePytorchTest):
"""
This test check the linear functional substitution function.
"""

def __init__(self, unit_test):
super().__init__(unit_test)

def create_inputs_shape(self):
return [[self.val_batch_size, 1000]]

def create_feature_network(self, input_shape):
return LinearFNet()
7 changes: 7 additions & 0 deletions tests/pytorch_tests/model_tests/test_feature_models_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@
from tests.pytorch_tests.model_tests.feature_models.layer_norm_net_test import LayerNormNetTest
from tests.pytorch_tests.model_tests.feature_models.linear_collapsing_test import TwoConv2DCollapsingTest, \
ThreeConv2DCollapsingTest, FourConv2DCollapsingTest, SixConv2DCollapsingTest
from tests.pytorch_tests.model_tests.feature_models.linear_function_test import LinearFNetTest
from tests.pytorch_tests.model_tests.feature_models.lut_quantizer_test import LUTWeightsQuantizerTest, \
LUTActivationQuantizerTest
from tests.pytorch_tests.model_tests.feature_models.manual_bit_selection import ManualBitWidthByLayerTypeTest, \
Expand Down Expand Up @@ -239,6 +240,12 @@ def test_bn_function(self):
"""
BNFNetTest(self).run_test()

def test_linear_function(self):
"""
This test check the linear functional substitution function.
"""
LinearFNetTest(self).run_test()

def test_broken_net(self):
"""
This test checks that the "broken" node (node without output) is being
Expand Down
Loading