Skip to content

Commit

Permalink
Add test for concat with 16 bit (#1159)
Browse files Browse the repository at this point in the history
  • Loading branch information
elad-c authored Aug 12, 2024
1 parent dc28638 commit a9dff96
Show file tree
Hide file tree
Showing 3 changed files with 23 additions and 5 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,8 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
topk,
squeeze,
MaxPool2d])
tp.OperationsSetToLayers("Default16BitInout", [torch.stack, torch.cat])
tp.OperationsSetToLayers("Default16BitInout",
[torch.stack, torch.cat, torch.concat, torch.concatenate])

tp.OperationsSetToLayers("Conv", [Conv2d, ConvTranspose2d],
attr_mapping=pytorch_linear_attr_mapping)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ def get_tpc(self):
def create_networks(self):
inputs = layers.Input(shape=self.get_input_shapes()[0][1:])
x = tf.multiply(inputs, inputs)
x = tf.concat([x, x], axis=1)
x = tf.add(x, np.ones((3,), dtype=np.float32))
x1 = tf.subtract(x, np.ones((3,), dtype=np.float32))
x = tf.multiply(x, x1)
Expand All @@ -49,9 +50,9 @@ def create_networks(self):

def compare(self, quantized_model, float_model, input_x=None, quantization_info=None):
mul1_act_quant = quantized_model.layers[3]
mul2_act_quant = quantized_model.layers[9]
mul2_act_quant = quantized_model.layers[11]
self.unit_test.assertTrue(mul1_act_quant.activation_holder_quantizer.num_bits == 16,
"1st mul activation bits should be 16 bits because of following add node.")
"1st mul activation bits should be 16 bits because of following concat node.")
self.unit_test.assertTrue(mul1_act_quant.activation_holder_quantizer.signed == True,
"1st mul activation should be forced by TPC to be signed, even though activations as all positive.")
self.unit_test.assertTrue(mul2_act_quant.activation_holder_quantizer.num_bits == 8,
Expand All @@ -77,6 +78,16 @@ def get_tpc(self):
def get_resource_utilization(self):
return mct.core.ResourceUtilization(activation_memory=200)

def create_networks(self):
inputs = layers.Input(shape=self.get_input_shapes()[0][1:])
x = tf.multiply(inputs, inputs)
x = tf.add(x, np.ones((3,), dtype=np.float32))
x1 = tf.subtract(x, np.ones((3,), dtype=np.float32))
x = tf.multiply(x, x1)
x = tf.keras.layers.Conv2D(3, 1)(x)
outputs = tf.divide(x, 2*np.ones((3,), dtype=np.float32))
return keras.Model(inputs=inputs, outputs=outputs)

def compare(self, quantized_model, float_model, input_x=None, quantization_info=None):
mul1_act_quant = quantized_model.layers[3]
mul2_act_quant = quantized_model.layers[9]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,15 +26,18 @@

class Activation16BitNet(torch.nn.Module):

def __init__(self):
def __init__(self, use_concat=True):
super().__init__()
self.use_concat = use_concat
self.conv = torch.nn.Conv2d(3, 3, 1)
self.register_buffer('add_const', torch.rand((3, 1, 1)))
self.register_buffer('sub_const', torch.rand((3, 1, 1)))
self.register_buffer('div_const', 2*torch.ones((3, 1, 1)))

def forward(self, x):
x = torch.mul(x, x)
if self.use_concat:
x = torch.concat([x, x], dim=2)
x1 = torch.add(x, self.add_const)
x = torch.sub(x, self.sub_const)
x = torch.mul(x, x1)
Expand All @@ -60,7 +63,7 @@ def compare(self, quantized_model, float_model, input_x=None, quantization_info=
mul1_act_quant = quantized_model.mul_activation_holder_quantizer
mul2_act_quant = quantized_model.mul_1_activation_holder_quantizer
self.unit_test.assertTrue(mul1_act_quant.activation_holder_quantizer.num_bits == 16,
"1st mul activation bits should be 16 bits because of following add node.")
"1st mul activation bits should be 16 bits because of following concat node.")
self.unit_test.assertTrue(mul1_act_quant.activation_holder_quantizer.signed == True,
"1st mul activation should be forced by TPC to be signed, even though activations as all positive.")
self.unit_test.assertTrue(mul2_act_quant.activation_holder_quantizer.num_bits == 8,
Expand Down Expand Up @@ -90,6 +93,9 @@ def get_tpc(self):
def get_resource_utilization(self):
return mct.core.ResourceUtilization(activation_memory=200)

def create_networks(self):
return Activation16BitNet(use_concat=False)

def compare(self, quantized_model, float_model, input_x=None, quantization_info=None):
mul1_act_quant = quantized_model.mul_activation_holder_quantizer
mul2_act_quant = quantized_model.mul_1_activation_holder_quantizer
Expand Down

0 comments on commit a9dff96

Please sign in to comment.