Skip to content

Commit

Permalink
Fix target KPI usage in tutorials
Browse files Browse the repository at this point in the history
  • Loading branch information
Ofir Gordon authored and Ofir Gordon committed Mar 12, 2024
1 parent 0026b21 commit 1e20fbb
Show file tree
Hide file tree
Showing 14 changed files with 28 additions and 21 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -66,3 +66,14 @@ def __init__(self,
self.norm_scores = norm_scores

self.metric_normalization_threshold = metric_normalization_threshold

def set_target_kpi(self, target_kpi: KPI):
"""
Setting target KPI in mixed precision config.
Args:
target_kpi: A target KPI to set.
"""

self.target_kpi = target_kpi
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@ def representative_data_gen() -> list:
# examples:
# weights_compression_ratio = 0.75 - About 0.75 of the model's weights memory size when quantized with 8 bits.
kpi = mct.core.KPI(kpi_data.weights_memory * args.weights_compression_ratio)
config.mixed_precision_config.set_target_kpi(kpi)

# Create a GPTQ quantization configuration and set the number of training iterations.
gptq_config = mct.gptq.get_keras_gptq_config(n_epochs=args.num_gptq_training_iterations,
Expand All @@ -146,8 +147,7 @@ def representative_data_gen() -> list:
representative_data_gen,
gptq_config=gptq_config,
core_config=config,
target_platform_capabilities=target_platform_cap,
target_kpi=kpi)
target_platform_capabilities=target_platform_cap)

# Export quantized model to TFLite and Keras.
# For more details please see: https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/exporter/README.md
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -387,12 +387,12 @@
"# set weights memory size, so the quantized model will fit the IMX500 memory\n",
"kpi = mct.core.KPI(weights_memory=2674291)\n",
"# set MixedPrecision configuration for compressing the weights\n",
"mp_config = mct.core.MixedPrecisionQuantizationConfig(use_hessian_based_scores=False)\n",
"mp_config = mct.core.MixedPrecisionQuantizationConfig(use_hessian_based_scores=False,\n",
" target_kpi=kpi)\n",
"core_config = mct.core.CoreConfig(mixed_precision_config=mp_config)\n",
"quant_model, _ = mct.ptq.keras_post_training_quantization(\n",
" model,\n",
" get_representative_dataset(20),\n",
" target_kpi=kpi,\n",
" core_config=core_config,\n",
" target_platform_capabilities=tpc)"
],
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -266,7 +266,8 @@
"# while the bias will not)\n",
"# examples:\n",
"weights_compression_ratio = 0.75 # About 0.75 of the model's weights memory size when quantized with 8 bits.\n",
"kpi = mct.core.KPI(kpi_data.weights_memory * weights_compression_ratio)"
"kpi = mct.core.KPI(kpi_data.weights_memory * weights_compression_ratio)\n",
"core_config.mixed_precision_config.set_target_kpi(kpi)"
],
"metadata": {
"collapsed": false
Expand Down Expand Up @@ -296,7 +297,6 @@
"quantized_model, quantization_info = mct.ptq.keras_post_training_quantization(\n",
" float_model,\n",
" representative_dataset_gen,\n",
" target_kpi=kpi,\n",
" core_config=core_config,\n",
" target_platform_capabilities=tpc)"
]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -130,12 +130,12 @@ def representative_data_gen() -> list:
# examples:
# weights_compression_ratio = 0.75 - About 0.75 of the model's weights memory size when quantized with 8 bits.
kpi = mct.core.KPI(kpi_data.weights_memory * args.weights_compression_ratio)
configuration.mixed_precision_config.set_target_kpi(kpi)

# It is also possible to constraint only part of the KPI metric, e.g., by providing only weights_memory target
# in the past KPI object, e.g., kpi = mct.core.KPI(kpi_data.weights_memory * 0.75)
quantized_model, quantization_info = mct.ptq.keras_post_training_quantization(model,
representative_data_gen,
target_kpi=kpi,
core_config=configuration,
target_platform_capabilities=target_platform_cap)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -136,10 +136,10 @@ def representative_data_gen() -> list:
# weights_compression_ratio = 0.4 - About 0.4 of the model's weights memory size when quantized with 8 bits.
kpi = mct.core.KPI(kpi_data.weights_memory * args.weights_compression_ratio)
# Note that in this example, activations are quantized with fixed bit-width (non mixed-precision) of 8-bit.
configuration.mixed_precision_config.set_target_kpi(kpi)

quantized_model, quantization_info = mct.ptq.keras_post_training_quantization(model,
representative_data_gen,
target_kpi=kpi,
core_config=configuration,
target_platform_capabilities=target_platform_cap)

Expand Down
2 changes: 1 addition & 1 deletion tutorials/notebooks/keras/ptq/example_keras_yolov8n.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -297,11 +297,11 @@
" config,\n",
" target_platform_capabilities=tpc)\n",
"kpi = mct.core.KPI(kpi_data.weights_memory * 0.75)\n",
"config.mixed_precision_config.set_target_kpi(kpi)\n",
"\n",
"# Perform post training quantization\n",
"quant_model, _ = mct.ptq.keras_post_training_quantization(model,\n",
" representative_dataset_gen,\n",
" target_kpi=kpi,\n",
" core_config=config,\n",
" target_platform_capabilities=tpc)\n",
"print('Quantized model is ready')"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -193,11 +193,11 @@
" config,\n",
" target_platform_capabilities=tpc)\n",
"kpi = mct.core.KPI(kpi_data.weights_memory * 0.75)\n",
"config.mixed_precision_config.set_target_kpi(kpi)\n",
"\n",
"# Perform post training quantization\n",
"quant_model, _ = mct.ptq.keras_post_training_quantization(model,\n",
" representative_dataset_gen,\n",
" target_kpi=kpi,\n",
" core_config=config,\n",
" target_platform_capabilities=tpc)\n",
"print('Quantized model is ready')"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,13 +123,13 @@ def representative_data_gen() -> list:
# examples:
# weights_compression_ratio = 0.75 - About 0.75 of the model's weights memory size when quantized with 8 bits.
kpi = mct.core.KPI(kpi_data.weights_memory * args.weights_compression_ratio)
configuration.mixed_precision_config.set_target_kpi(kpi)

# It is also possible to constraint only part of the KPI metric, e.g., by providing only weights_memory target
# in the past KPI object, e.g., kpi = mct.core.KPI(kpi_data.weights_memory * 0.75)

quantized_model, quantization_info = mct.ptq.pytorch_post_training_quantization(model,
representative_data_gen,
target_kpi=kpi,
core_config=configuration,
target_platform_capabilities=target_platform_cap)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -128,10 +128,10 @@ def representative_data_gen() -> list:
# weights_compression_ratio = 0.4 - About 0.4 of the model's weights memory size when quantized with 8 bits.
kpi = mct.core.KPI(kpi_data.weights_memory * args.weights_compression_ratio)
# Note that in this example, activations are quantized with fixed bit-width (non mixed-precision) of 8-bit.
configuration.mixed_precision_config.set_target_kpi(kpi)

quantized_model, quantization_info = mct.ptq.pytorch_post_training_quantization(model,
representative_data_gen,
target_kpi=kpi,
core_config=configuration,
target_platform_capabilities=target_platform_cap)

Original file line number Diff line number Diff line change
Expand Up @@ -515,7 +515,8 @@
"# while the bias will not)\n",
"# examples:\n",
"# weights_compression_ratio = 0.75 - About 0.75 of the model's weights memory size when quantized with 8 bits.\n",
"kpi = mct.core.KPI(kpi_data.weights_memory * 0.75)"
"kpi = mct.core.KPI(kpi_data.weights_memory * 0.75)\n",
"configuration.mixed_precision_config.set_target_kpi(kpi)"
]
},
{
Expand All @@ -537,7 +538,6 @@
"source": [
"quantized_model, quantization_info = mct.ptq.pytorch_post_training_quantization(model,\n",
" representative_data_gen,\n",
" target_kpi=kpi,\n",
" core_config=configuration,\n",
" target_platform_capabilities=target_platform_cap)\n",
" "
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -241,12 +241,12 @@ def representative_data_gen() -> list:
# examples:
# weights_compression_ratio = 0.75 - About 0.75 of the model's weights memory size when quantized with 8 bits.
kpi = mct.core.KPI(kpi_data.weights_memory * args.weights_compression_ratio)
configuration.mixed_precision_config.set_target_kpi(kpi)

# It is also possible to constraint only part of the KPI metric, e.g., by providing only weights_memory target
# in the past KPI object, e.g., kpi = mct.core.KPI(kpi_data.weights_memory * 0.75)
quantized_model, quantization_info = mct.ptq.pytorch_post_training_quantization(model,
representative_data_gen,
target_kpi=kpi,
core_config=configuration,
target_platform_capabilities=target_platform_cap)
# Finally, we evaluate the quantized model:
Expand Down
4 changes: 1 addition & 3 deletions tutorials/quick_start/keras_fw/quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,10 +100,10 @@ def quantize(model: tf.keras.Model,
shift_negative_activation_correction=True),
mixed_precision_config=mp_conf)
target_kpi = get_target_kpi(model, mp_wcr, representative_data_gen, core_conf, tpc)
core_conf.mixed_precision_config.set_target_kpi(target_kpi)
else:
core_conf = CoreConfig(quantization_config=mct.core.QuantizationConfig(
shift_negative_activation_correction=True))
target_kpi = None

# Quantize model
if args.get('gptq', False):
Expand All @@ -118,7 +118,6 @@ def quantize(model: tf.keras.Model,
quantized_model, quantization_info = \
mct.gptq.keras_gradient_post_training_quantization(model,
representative_data_gen=representative_data_gen,
target_kpi=target_kpi,
core_config=core_conf,
gptq_config=gptq_conf,
gptq_representative_data_gen=representative_data_gen,
Expand All @@ -130,7 +129,6 @@ def quantize(model: tf.keras.Model,
quantized_model, quantization_info = \
mct.ptq.keras_post_training_quantization(model,
representative_data_gen=representative_data_gen,
target_kpi=target_kpi,
core_config=core_conf,
target_platform_capabilities=tpc)

Expand Down
4 changes: 1 addition & 3 deletions tutorials/quick_start/pytorch_fw/quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,10 +101,10 @@ def quantize(model: nn.Module,
shift_negative_activation_correction=True),
mixed_precision_config=mp_conf)
target_kpi = get_target_kpi(model, mp_wcr, representative_data_gen, core_conf, tpc)
core_conf.mixed_precision_config.set_target_kpi(target_kpi)
else:
core_conf = CoreConfig(quantization_config=mct.core.QuantizationConfig(
shift_negative_activation_correction=True))
target_kpi = None

# Quantize model
if args.get('gptq', False):
Expand All @@ -119,7 +119,6 @@ def quantize(model: nn.Module,
quantized_model, quantization_info = \
mct.gptq.pytorch_gradient_post_training_quantization(model,
representative_data_gen=representative_data_gen,
target_kpi=target_kpi,
core_config=core_conf,
gptq_config=gptq_conf,
gptq_representative_data_gen=representative_data_gen,
Expand All @@ -131,7 +130,6 @@ def quantize(model: nn.Module,
quantized_model, quantization_info = \
mct.ptq.pytorch_post_training_quantization(model,
representative_data_gen=representative_data_gen,
target_kpi=target_kpi,
core_config=core_conf,
target_platform_capabilities=tpc)

Expand Down

0 comments on commit 1e20fbb

Please sign in to comment.