-
Notifications
You must be signed in to change notification settings - Fork 0
Sample Evaluation in an Interactive Environment
Yiyi Chen edited this page Feb 16, 2024
·
5 revisions
cd MultiVec2Text
2. run interactive mode using singularity container and activate the conda environment (make sure the computing node has GPUs).
srun --gres=gpu:1 --time=12:00:00 --pty singularity shell --nv ~/pytorch_23.10-py3.sif
source /home/xxxx/xxxx/miniconda3/etc/profile.d/conda.sh
conda activate v2t
python # get into python terminal
samples = ["ford wird aufgefordert 1,3 millionen suvs wegen abgasen zurückzurufen" ,"ford urged to recall 1.3 million suvs over exhaust fumes", "ford instó a retirar 1.3 millones suvs por el escape de humos", "ford doit rappeler 1,3 million de suv en raison des gaz d'échappement."]
from eval_samples import *
model_path="yiyic/t5_me5_base_mtg_en_fr_de_es_5m_32_corrector"
experiment, trainer = analyze_utils.load_experiment_and_trainer_from_pretrained(
model_path, use_less_data=3000)
trainer, device = trainer_attributes(trainer, experiment)
# define correction steps
trainer.num_gen_recursive_steps = 10
# define sbeam
trainer.sequence_beam_width = 1
# evaluate samples.
evaluate_samples(trainer, device, samples)