-
Notifications
You must be signed in to change notification settings - Fork 242
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Correct hex lattice and implement hex u-matrix
Changed generate_hex_lattice() from sompy/codebook.py such as the coordinates correspond to a regular hexagon grid (which wasn't the case previously). Changed sompy/visualization/umatrix.py such that if the som object has a hexagonal lattice, then the u-matrix is plotted on a hexagonal grid. All additional plot features (e.g. contour, blob, etc.) are compatible with the hexagonal grid. Also added colorbar to the plot.
- Loading branch information
Showing
2 changed files
with
130 additions
and
64 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,95 +1,161 @@ | ||
from .view import MatplotView | ||
from .mapview import MapView | ||
from .plot_tools import plot_hex_map | ||
from matplotlib import pyplot as plt | ||
from pylab import imshow, contour | ||
from matplotlib import cm | ||
from mpl_toolkits.axes_grid1 import make_axes_locatable | ||
from skimage.feature import blob_log | ||
|
||
from warnings import warn | ||
from math import sqrt | ||
import numpy as np | ||
import scipy | ||
|
||
|
||
class UMatrixView(MatplotView): | ||
def rectxy_to_hexaxy(coord, X, Y): | ||
"""Convert rectangular grid xy coordinates to hexagonal grid xy coordinates. | ||
Useful for plotting additional data on top of hexagonal grid. | ||
Args: | ||
coord (array): array with rectangular grid xy coordinates | ||
X (array): mapsize shaped array with hexagonal grid x coordinates | ||
Y (array): mapsize shaped array with hexagonal grid y coordinates | ||
Returns: | ||
[array]: array of coord's shape with hexagonal grid xy coordinates | ||
""" | ||
out = np.vstack(([X[tuple(i)] for i in coord], [Y[tuple(i)] for i in coord])).T | ||
return out | ||
|
||
class UMatrixView(MapView): | ||
def build_u_matrix(self, som, distance=1, row_normalized=False): | ||
UD2 = som.calculate_map_dist() | ||
Umatrix = np.zeros((som.codebook.nnodes, 1)) | ||
codebook = som.codebook.matrix | ||
if row_normalized: | ||
vector = som._normalizer.normalize_by(codebook.T, codebook.T, | ||
method='var').T | ||
vector = som._normalizer.normalize_by(codebook.T, codebook.T).T | ||
else: | ||
vector = codebook | ||
|
||
for i in range(som.codebook.nnodes): | ||
codebook_i = vector[i][np.newaxis, :] | ||
neighborbor_ind = UD2[i][0:] <= distance | ||
neighborbor_codebooks = vector[neighborbor_ind] | ||
Umatrix[i] = scipy.spatial.distance_matrix( | ||
codebook_i, neighborbor_codebooks).mean() | ||
neighborbor_dists = scipy.spatial.distance_matrix( | ||
codebook_i, neighborbor_codebooks) | ||
Umatrix[i] = np.sum(neighborbor_dists) / (neighborbor_dists.shape[1] - 1) | ||
|
||
return Umatrix.reshape(som.codebook.mapsize) | ||
|
||
def show(self, som, distance2=1, row_normalized=False, show_data=True, | ||
contooor=True, blob=False, labels=False): | ||
umat = self.build_u_matrix(som, distance=distance2, | ||
row_normalized=row_normalized) | ||
def _set_contour(self, umat, ax, X=None, Y=None, hex=False): | ||
mn = np.min(umat.flatten()) | ||
md = np.median(umat.flatten()) | ||
if hex: | ||
ax.contour(X, Y, umat, np.linspace(mn, md, 15), | ||
linewidths=0.7, cmap=plt.cm.get_cmap('Blues')) | ||
else: | ||
ax.contour(umat, np.linspace(mn, md, 15), | ||
linewidths=0.7, cmap=plt.cm.get_cmap('Blues')) | ||
|
||
def _set_show_data(self, X, Y, ax): | ||
ax.scatter(X, Y, s=2, alpha=1., c='Gray', | ||
marker='o', cmap='jet', linewidths=3, edgecolor='Gray') | ||
|
||
def _set_labels(self, labels, X, Y, ax): | ||
for label, x, y in zip(labels, X, Y): | ||
ax.annotate(str(label), xy=(x, y), | ||
horizontalalignment='center', | ||
verticalalignment='center') | ||
|
||
def _set_blob(self, umat, coord, ax, X=None, Y=None, hex=False): | ||
# 'Laplacian of Gaussian' | ||
image = 1 / umat | ||
blobs = blob_log(image, max_sigma=5, num_sigma=4, threshold=.152) | ||
blobs[:, 2] = blobs[:, 2] * sqrt(2) | ||
if hex: | ||
blobs[:, :2] = rectxy_to_hexaxy(blobs[:, :2].astype(int), X, Y) | ||
sel_points = list() | ||
|
||
for blob in blobs: | ||
row, col, r = blob | ||
c = plt.Circle((row, col), r, color='red', linewidth=2, | ||
fill=False) | ||
ax.add_patch(c) | ||
|
||
dist = scipy.spatial.distance_matrix( | ||
coord, np.array([row, col])[np.newaxis, :]) | ||
sel_point = dist <= r | ||
ax.plot(coord[:, 0][sel_point[:, 0]], | ||
coord[:, 1][sel_point[:, 0]], '.r') | ||
sel_points.append(sel_point[:, 0]) | ||
if hex: | ||
ax.set_xlim([-0.5, umat.shape[1]]) | ||
ax.set_ylim([0.6, -((umat.shape[0] - 1) * sqrt(3)/2 + 0.6)]) | ||
else: | ||
ax.set_xlim([-0.5, umat.shape[1] - 0.5]) | ||
ax.set_ylim([-0.5, umat.shape[0] - 0.5]) | ||
|
||
|
||
def show(self, som, distance=1, row_normalized=False, show_data=False, | ||
contour=False, blob=False, labels=False): | ||
# Setting figure parameters | ||
org_w = self.width | ||
org_h = self.height | ||
(self.width, self.height, indtoshow, no_row_in_plot, no_col_in_plot, | ||
axis_num) = self._calculate_figure_params(som, 1, 1) | ||
self.width /= (self.width/org_w) if self.width > self.height else (self.height/org_h) | ||
self.height /= (self.width / org_w) if self.width > self.height else (self.height / org_h) | ||
self.prepare() | ||
plt.rc('figure', titlesize=self.text_size) | ||
colormap = plt.get_cmap('RdYlBu_r') | ||
|
||
# Setting figure data | ||
if som.codebook.lattice == "hexa" and distance < sqrt(3): | ||
warn("For hexagonal lattice, distance < sqrt(3) produces a null U-matrix.") | ||
umat = self.build_u_matrix(som, distance=distance, row_normalized=row_normalized) | ||
msz = som.codebook.mapsize | ||
proj = som.project_data(som.data_raw) | ||
coord = som.bmu_ind_to_xy(proj) | ||
|
||
self._fig, ax = plt.subplots(1, 1) | ||
imshow(umat, cmap=plt.cm.get_cmap('RdYlBu_r'), alpha=1) | ||
coord = som.bmu_ind_to_xy(proj)[:, :2] | ||
sel_points = list() | ||
|
||
if contooor: | ||
mn = np.min(umat.flatten()) | ||
mx = np.max(umat.flatten()) | ||
std = np.std(umat.flatten()) | ||
md = np.median(umat.flatten()) | ||
mx = md + 0*std | ||
contour(umat, np.linspace(mn, mx, 15), linewidths=0.7, | ||
cmap=plt.cm.get_cmap('Blues')) | ||
if som.codebook.lattice == "rect": | ||
ax = self._fig.add_subplot(111) | ||
ax.imshow(umat, cmap=colormap, alpha=1) | ||
divider = make_axes_locatable(ax) | ||
cax = divider.append_axes("right", size="5%", pad=0.05) | ||
plt.colorbar(cm.ScalarMappable(cmap=colormap), cax=cax, orientation='vertical') | ||
coord = np.flip(coord, axis=1) | ||
|
||
if contour: | ||
self._set_contour(umat, ax, hex=False) | ||
|
||
if blob: | ||
self._set_blob(umat, coord, ax, hex=False) | ||
elif som.codebook.lattice == "hexa": | ||
ax, cents = plot_hex_map(umat, colormap=colormap, fig=self._fig, colorbar=True) | ||
X = np.flip(np.array(cents)[:, 0].reshape(msz[0], msz[1]), axis=1) | ||
Y = np.flip(np.array(cents)[:, 1].reshape(msz[0], msz[1]), axis=1) | ||
coord = rectxy_to_hexaxy(coord, X, Y) | ||
|
||
if contour: | ||
self._set_contour(umat, ax, X, Y, hex=True) | ||
|
||
if blob: | ||
self._set_blob(umat, coord, ax, X, Y, hex=True) | ||
else: | ||
raise ValueError( | ||
'lattice argument of SOM object should be either "rect" or "hexa".') | ||
|
||
if show_data: | ||
plt.scatter(coord[:, 1], coord[:, 0], s=2, alpha=1., c='Gray', | ||
marker='o', cmap='jet', linewidths=3, edgecolor='Gray') | ||
plt.axis('off') | ||
self._set_show_data(coord[:, 0], coord[:, 1], ax) | ||
|
||
if labels: | ||
if labels is True: | ||
labels = som.build_data_labels() | ||
for label, x, y in zip(labels, coord[:, 1], coord[:, 0]): | ||
plt.annotate(str(label), xy=(x, y), | ||
horizontalalignment='center', | ||
verticalalignment='center') | ||
|
||
labels = som.build_data_labels() | ||
self._set_labels(labels, coord[:, 0], coord[:, 1], ax) | ||
|
||
ratio = float(msz[0])/(msz[0]+msz[1]) | ||
self._fig.set_size_inches((1-ratio)*15, ratio*15) | ||
plt.tight_layout() | ||
plt.subplots_adjust(hspace=.00, wspace=.000) | ||
sel_points = list() | ||
|
||
if blob: | ||
from skimage.color import rgb2gray | ||
from skimage.feature import blob_log | ||
|
||
image = 1 / umat | ||
rgb2gray(image) | ||
|
||
# 'Laplacian of Gaussian' | ||
blobs = blob_log(image, max_sigma=5, num_sigma=4, threshold=.152) | ||
blobs[:, 2] = blobs[:, 2] * sqrt(2) | ||
imshow(umat, cmap=plt.cm.get_cmap('RdYlBu_r'), alpha=1) | ||
sel_points = list() | ||
|
||
for blob in blobs: | ||
row, col, r = blob | ||
c = plt.Circle((col, row), r, color='red', linewidth=2, | ||
fill=False) | ||
ax.add_patch(c) | ||
dist = scipy.spatial.distance_matrix( | ||
coord[:, :2], np.array([row, col])[np.newaxis, :]) | ||
sel_point = dist <= r | ||
plt.plot(coord[:, 1][sel_point[:, 0]], | ||
coord[:, 0][sel_point[:, 0]], '.r') | ||
sel_points.append(sel_point[:, 0]) | ||
plt.subplots_adjust(top=0.90, hspace=.00, wspace=.000) | ||
|
||
plt.show() | ||
return sel_points, umat |