-
Notifications
You must be signed in to change notification settings - Fork 47
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
308 additions
and
77 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
from datasets import load_dataset | ||
from transformers import XLMRobertaTokenizer | ||
|
||
def calculate_compression_rate(dataset_name): | ||
# Load the dataset | ||
dataset = load_dataset(dataset_name, split='train') | ||
|
||
# Initialize the tokenizer | ||
tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-base') | ||
|
||
total_chars = 0 | ||
total_tokens = 0 | ||
|
||
# Iterate over the dataset | ||
for sample in dataset: | ||
text = sample['text'] | ||
total_chars += len(text) | ||
|
||
# Tokenize the text | ||
tokens = tokenizer.tokenize(text) | ||
total_tokens += len(tokens) | ||
|
||
# Calculate the average compression rate | ||
avg_compression_rate = total_chars / total_tokens if total_tokens > 0 else 0 | ||
|
||
return avg_compression_rate | ||
|
||
# Example dataset | ||
dataset_name = "markus583/mC4-TEST" | ||
compression_rate = calculate_compression_rate(dataset_name) | ||
print(compression_rate) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,245 @@ | ||
import copy | ||
import logging | ||
import sys | ||
from dataclasses import dataclass | ||
from datetime import datetime | ||
from multiprocessing import Process | ||
from typing import List | ||
|
||
import numpy as np | ||
import optuna | ||
import torch | ||
from tqdm import tqdm | ||
from transformers import AutoModelForTokenClassification, HfArgumentParser | ||
|
||
import wtpsplit.models # noqa: F401 | ||
from wtpsplit.evaluation import evaluate_mixture | ||
from wtpsplit.evaluation.intrinsic import compute_statistics | ||
from wtpsplit.evaluation.intrinsic_pairwise import calculate_threshold, generate_k_mers, load_or_compute_logits | ||
from wtpsplit.extract import PyTorchWrapper | ||
|
||
logger = logging.getLogger() | ||
logger.setLevel(logging.INFO) | ||
|
||
|
||
@dataclass | ||
class Args: | ||
model_path: str | ||
adapter_path: str = None | ||
# eval data in the format: | ||
# { | ||
# "<lang_code>": { | ||
# "sentence": { | ||
# "<dataset_name>": { | ||
# "meta": { | ||
# "train_data": ["train sentence 1", "train sentence 2"] | ||
# }, | ||
# "data": ["test sentence 1", "test sentence 2"] | ||
# } | ||
# } | ||
# } | ||
# } | ||
eval_data_path: str = "data/eval.pth" | ||
valid_text_path: str = None # "data/sentence/valid.parquet" | ||
device: str = "cpu" | ||
block_size: int = 512 | ||
batch_size: int = 128 | ||
include_langs: List[str] = None | ||
threshold: float = 0.01 | ||
max_n_train_sentences: int = 10_000 | ||
save_suffix: str = "" | ||
do_lowercase: bool = False | ||
do_remove_punct: bool = False | ||
skip_adaptation: bool = True | ||
keep_logits: bool = True | ||
|
||
# k_mer-specific args | ||
min_k: int = 2 | ||
max_k: int = 4 | ||
max_n_samples: int = sys.maxsize | ||
sample_pct: float = 0.5 | ||
min_k_mer_length: int = 0 | ||
adjust_threshold: bool = True | ||
# threshold | ||
# threshold_increase_type: str = "linear" | ||
threshold_min_length: int = 0 | ||
threshold_max_length: int = 256 | ||
threshold_max: float = 0.1 | ||
# optuna args | ||
n_trials: int = 16 | ||
n_jobs: int = 32 | ||
|
||
|
||
def objective(trial: optuna.Trial, args: Args, eval_data: dict, f_list) -> float: | ||
# Suggest values for the hyperparameters we want to optimize | ||
args.threshold_min_length = trial.suggest_int("threshold_min_length", 0, 256) | ||
args.threshold_max_length = trial.suggest_int("threshold_max_length", 0, 256) | ||
args.threshold_max = trial.suggest_float("threshold_max", 0.00, 0.5) | ||
|
||
# Execute the main function and retrieve results | ||
all_results = [] | ||
all_results_avg = [] | ||
all_mean_u_acc = [] | ||
for i, k in enumerate(range(args.min_k, args.max_k + 1)): | ||
args.k = k | ||
f = f_list[i] | ||
results, results_avg = main(args, eval_data, f) | ||
all_results.append(results) | ||
all_results_avg.append(results_avg) | ||
all_mean_u_acc.append(results_avg["u_acc"]["mean"]) | ||
|
||
# Store results in the trial's user attributes | ||
trial.set_user_attr(f"{k}_detailed_results", results) | ||
trial.set_user_attr(f"{k}_average_results", results_avg) | ||
|
||
# Objective is to maximize the average U accuracy | ||
# return list as tuple | ||
return tuple(all_mean_u_acc) | ||
|
||
|
||
def load_data_and_model(args): | ||
logger.info("Loading model...") | ||
model = PyTorchWrapper(AutoModelForTokenClassification.from_pretrained(args.model_path).to(args.device)) | ||
|
||
logger.info("Loading evaluation data...") | ||
eval_data = torch.load(args.eval_data_path) | ||
|
||
# Possibly other initialization code here | ||
return model, eval_data | ||
|
||
|
||
def main(args, eval_data, f): | ||
# now, compute the intrinsic scores. | ||
results = {} | ||
clfs = {} | ||
# Initialize lists to store scores for each metric across all languages | ||
u_scores = [] | ||
u_accs = [] | ||
thresholds_adj = [] | ||
|
||
for lang_code, dsets in tqdm(eval_data.items(), desc="Languages", total=len(eval_data), disable=True): | ||
if args.include_langs is not None and lang_code not in args.include_langs: | ||
continue | ||
|
||
results[lang_code] = {} | ||
clfs[lang_code] = {} | ||
|
||
for dataset_name, dataset in dsets["sentence"].items(): | ||
sentences = dataset["data"] | ||
sent_k_mers = generate_k_mers( | ||
sentences, | ||
k=args.k, | ||
do_lowercase=args.do_lowercase, | ||
do_remove_punct=args.do_remove_punct, | ||
sample_pct=args.sample_pct, | ||
max_n_samples=args.max_n_samples, | ||
min_k_mer_length=args.min_k_mer_length, | ||
) | ||
|
||
clf = [None, None, None, args.threshold] | ||
|
||
score_u = [] | ||
acc_u = [] | ||
thresholds = [] | ||
for i, k_mer in enumerate(sent_k_mers): | ||
start, end = f[lang_code][dataset_name]["test_logit_lengths"][i] | ||
if args.adjust_threshold: | ||
seq_len = f[lang_code][dataset_name]["test_n_logits"][i] | ||
threshold_adjusted = calculate_threshold( | ||
sequence_length=seq_len, | ||
max_length=args.threshold_max_length, | ||
min_length=args.threshold_min_length, | ||
max_threshold=args.threshold_max, | ||
default_threshold=args.threshold, | ||
) | ||
clf[-1] = threshold_adjusted | ||
thresholds.append(threshold_adjusted) | ||
else: | ||
raise NotImplementedError("Optuna runs are to select the optimal threshold config!") | ||
single_score_u, _, info = evaluate_mixture( | ||
lang_code, | ||
f[lang_code][dataset_name]["test_logits"][:][start:end], | ||
list(k_mer), | ||
*clf, | ||
) | ||
score_u.append(single_score_u) | ||
acc_u.append(info["info_newline"]["correct_pairwise"]) | ||
|
||
score_u = np.mean(score_u) | ||
acc_u = np.mean(acc_u) | ||
threshold = np.mean(thresholds) | ||
|
||
results[lang_code][dataset_name] = { | ||
"u": score_u, | ||
"u_acc": acc_u, | ||
"threshold_adj": threshold, | ||
} | ||
|
||
u_scores.append((score_u, lang_code)) | ||
u_accs.append((acc_u, lang_code)) | ||
thresholds_adj.append((threshold, lang_code)) | ||
|
||
# Compute statistics for each metric across all languages | ||
results_avg = { | ||
"u": compute_statistics(u_scores), | ||
"u_acc": compute_statistics(u_accs), | ||
"threshold_adj": compute_statistics(thresholds_adj), | ||
"include_langs": args.include_langs, | ||
} | ||
|
||
return results, results_avg | ||
|
||
|
||
def run_optimization(storage_url, study_name, args, eval_data, f_list): | ||
""" | ||
Function to run Optuna optimization in a separate process. | ||
""" | ||
study = optuna.load_study(study_name=study_name, storage=storage_url) | ||
study.optimize( | ||
lambda trial: objective(trial, copy.deepcopy(args), eval_data, f_list), | ||
n_trials=args.n_trials, | ||
show_progress_bar=True, | ||
) | ||
|
||
print(f"Completed optimization for study: {study_name}") | ||
|
||
|
||
if __name__ == "__main__": | ||
(args,) = HfArgumentParser([Args]).parse_args_into_dataclasses() | ||
|
||
model, eval_data = load_data_and_model(args) | ||
|
||
# first, logits for everything. | ||
f_list = [] | ||
for k in range(args.min_k, args.max_k + 1): | ||
args.k = k | ||
save_str = f"{args.model_path.replace('/','_')}_b{args.block_size}_u{args.threshold}_k_{k}{args.save_suffix}" | ||
print(save_str) | ||
out, _ = load_or_compute_logits(args, model, eval_data, None, save_str) | ||
f_list.append(out) | ||
|
||
# replace k_[max_k] with k_mink-max_k in save_str | ||
save_str = save_str.replace(f"k_{args.max_k}", f"k_{args.min_k}-{args.max_k}") | ||
|
||
# storage using SQLite URL | ||
storage_url = "mysql://root@localhost/example" | ||
study_name = f"{save_str}_{datetime.now().strftime('%Y%m%d%H%M%S')}" | ||
|
||
study = optuna.create_study( | ||
study_name=study_name, | ||
storage=storage_url, | ||
directions=["maximize"] * (args.max_k - args.min_k + 1), | ||
load_if_exists=True, | ||
) | ||
|
||
# Create multiple studies and launch them in separate processes | ||
processes = [] | ||
for i in range(args.n_jobs): | ||
proc = Process(target=run_optimization, args=(storage_url, study_name, args, eval_data, f_list)) | ||
processes.append(proc) | ||
proc.start() | ||
|
||
# Wait for all processes to complete | ||
for proc in processes: | ||
proc.join() | ||
|
Oops, something went wrong.