Optuna extension for JSON and YAML configuration files
pip install optunizer
- with PostresSQL connector
pip install optunizer[psycopg]
- Suppose you have some script/program (e.g.
main.py
) with config in YAML/JSON file (e.g.config.yaml
) that returns some output (e.g.metrics.json
)
- main.py
import json
import yaml
config_file = 'config.yaml'
with open(config_file) as f:
params = yaml.safe_load(f)
metric = params['param1'] + params['param2']
metrics = {'metric': metric}
metrics_file = 'metrics.json'
with open(metrics_file, 'w') as f:
json.dump(metrics, f)
- config.yaml
param1: 2
param2: 0.5
param3: c
- metrics.json
{
"metric": 0.3
}
- Make optunizer config file, e.g.
optunizer.yaml
attrs: # track all fields in files
config.yaml: true
metrics.json: true
optunizer_sysinfo.json: true
class: optunizer.optimizer.Optimizer
load_if_exists: true
export_csv: optunizer_results.csv
export_metrics: optunizer_metrics.json
export_sysinfo: optunizer_sysinfo.json
study: optunizer_test
objectives: # Specify objectives, e.g. fields in metrics.json file
[email protected]: minimize
params: # Specify params, e.g. fields in config.yaml file
[email protected]:
method: suggest_int
method_kwargs:
high: 3
low: 0
[email protected]:
method: suggest_float
method_kwargs:
high: 1.0
low: 0.01
log: true
[email protected]:
method: suggest_categorical
method_kwargs:
choices: [a, b, c]
pruner: PatientPruner
pruner_kwargs: # Specify pruner, e.g. PatientPruner with NopPruner subpruner
min_delta: 0
patience: 0
wrapped_pruner: NopPruner
wrapped_pruner_kwargs: {}
sampler: PartialFixedSampler
sampler_kwargs: # Specify sampler, e.g. PartialFixedSampler with GridSampler subsampler
base_sampler: RandomSampler
base_sampler_kwargs: {}
# base_sampler: GridSampler
# base_sampler_kwargs:
# search_space:
# [email protected]: [0, 1, 2]
# [email protected]: [0.01, 0.5]
fixed_params:
[email protected]: a
subprocess_kwargs: # Specify your command
args:
- python
- main.py
- config.yaml
- Run optunizer
OPTUNA_CONFIG=optunizer.yaml python -m optunizer
or
python -m optunizer optunizer.yaml
- Run optunizer streamlit viz
pip install optunizer[viz]
python -m optunizer app
- There are several useful environment variables, that could be set in command line,
.env
or.env.secret
files
OPTUNA_CONFIG=optunizer.yaml
OPTUNA_CONFIG_APP=app.yaml
OPTUNA_SHARED=.env
OPTUNA_SECRET=.env.secret
OPTUNA_URL=postgresql+psycopg2://USER:PASSWORD@IP:PORT/DB # see https://docs.sqlalchemy.org/en/14/core/engines.html
OPTUNA_STUDY=STUDY_NAME
OPTUNA_TRIALS=3
OPTUNA_TIMEOUT=3600
OPTUNA_LOAD_IF_EXISTS=1
OPTUNA_EXPORT_CSV=CSV_FILE_NAME
OPTUNA_EXPORT_METRICS=METRICS_FILE_NAME
OPTUNA_EXPORT_SYSINFO=SYSINFO_FILE_NAME