-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
245 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,245 @@ | ||
"""Extracting Pydantic Data Models from OpenAI Chat Models.""" | ||
## Originally from https://github.com/jxnl/instructor/blob/main/instructor/function_calls.py | ||
## | ||
## Brought over because chatlab is on the new `openai` bindings and likely soon a different version of pydantic. | ||
## | ||
|
||
|
||
# MIT License | ||
# | ||
# Copyright (c) 2023 Jason Liu | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
import json | ||
from functools import wraps | ||
from typing import Any, Callable | ||
|
||
from docstring_parser import parse | ||
from pydantic import BaseModel, create_model, validate_arguments | ||
|
||
|
||
class openai_function: | ||
"""Decorator to convert a function into an OpenAI function. | ||
This decorator will convert a function into an OpenAI function. The | ||
function will be validated using pydantic and the schema will be | ||
generated from the function signature. | ||
Example: | ||
```python | ||
@openai_function | ||
def sum(a: int, b: int) -> int: | ||
return a + b | ||
completion = openai.ChatCompletion.create( | ||
... | ||
messages=[{ | ||
"content": "What is 1 + 1?", | ||
"role": "user" | ||
}] | ||
) | ||
sum.from_response(completion) | ||
# 2 | ||
``` | ||
""" | ||
|
||
def __init__(self, func: Callable) -> None: | ||
self.func = func | ||
self.validate_func = validate_arguments(func) | ||
self.docstring = parse(self.func.__doc__ or "") | ||
|
||
parameters = self.validate_func.model.model_json_schema() | ||
parameters["properties"] = { | ||
k: v | ||
for k, v in parameters["properties"].items() | ||
if k not in ("v__duplicate_kwargs", "args", "kwargs") | ||
} | ||
for param in self.docstring.params: | ||
if (name := param.arg_name) in parameters["properties"] and ( | ||
description := param.description | ||
): | ||
parameters["properties"][name]["description"] = description | ||
parameters["required"] = sorted( | ||
k for k, v in parameters["properties"].items() if "default" not in v | ||
) | ||
self.openai_schema = { | ||
"name": self.func.__name__, | ||
"description": self.docstring.short_description, | ||
"parameters": parameters, | ||
} | ||
self.model = self.validate_func.model | ||
|
||
def __call__(self, *args: Any, **kwargs: Any) -> Any: | ||
@wraps(self.func) | ||
def wrapper(*args, **kwargs): | ||
return self.validate_func(*args, **kwargs) | ||
|
||
return wrapper(*args, **kwargs) | ||
|
||
def from_response(self, completion, throw_error=True, strict: bool = None): | ||
""" | ||
Parse the response from OpenAI's API and return the function call | ||
Parameters: | ||
completion (openai.ChatCompletion): The response from OpenAI's API | ||
throw_error (bool): Whether to throw an error if the response does not contain a function call | ||
Returns: | ||
result (any): result of the function call | ||
""" | ||
message = completion["choices"][0]["message"] | ||
|
||
if throw_error: | ||
assert "function_call" in message, "No function call detected" | ||
assert ( | ||
message["function_call"]["name"] == self.openai_schema["name"] | ||
), "Function name does not match" | ||
|
||
function_call = message["function_call"] | ||
arguments = json.loads(function_call["arguments"], strict=strict) | ||
return self.validate_func(**arguments) | ||
|
||
|
||
class OpenAISchema(BaseModel): | ||
"""Augments a Pydantic model with OpenAI's schema for function calling. | ||
This class augments a Pydantic model with OpenAI's schema for function calling. The schema is generated from the model's signature and docstring. The schema can be used to validate the response from OpenAI's API and extract the function call. | ||
## Usage | ||
```python | ||
from instructor import OpenAISchema | ||
class User(OpenAISchema): | ||
name: str | ||
age: int | ||
completion = openai.ChatCompletion.create( | ||
model="gpt-3.5-turbo", | ||
messages=[{ | ||
"content": "Jason is 20 years old", | ||
"role": "user" | ||
}], | ||
functions=[User.openai_schema], | ||
function_call={"name": User.openai_schema["name"]}, | ||
) | ||
user = User.from_response(completion) | ||
print(user.model_dump()) | ||
``` | ||
## Result | ||
``` | ||
{ | ||
"name": "Jason Liu", | ||
"age": 20, | ||
} | ||
``` | ||
""" | ||
|
||
@property | ||
def openai_schema(cls): | ||
"""Return the schema in the format of OpenAI's schema as jsonschema. | ||
Note: | ||
Its important to add a docstring to describe how to best use this class, it will be included in the description attribute and be part of the prompt. | ||
Returns: | ||
model_json_schema (dict): A dictionary in the format of OpenAI's schema as jsonschema | ||
""" | ||
schema = cls.model_json_schema() | ||
docstring = parse(cls.__doc__ or "") | ||
parameters = { | ||
k: v for k, v in schema.items() if k not in ("title", "description") | ||
} | ||
for param in docstring.params: | ||
if (name := param.arg_name) in parameters["properties"] and ( | ||
description := param.description | ||
): | ||
if "description" not in parameters["properties"][name]: | ||
parameters["properties"][name]["description"] = description | ||
|
||
parameters["required"] = sorted( | ||
k for k, v in parameters["properties"].items() if "default" not in v | ||
) | ||
|
||
if "description" not in schema: | ||
if docstring.short_description: | ||
schema["description"] = docstring.short_description | ||
else: | ||
schema["description"] = ( | ||
f"Correctly extracted `{cls.__name__}` with all " | ||
f"the required parameters with correct types" | ||
) | ||
|
||
return { | ||
"name": schema["title"], | ||
"description": schema["description"], | ||
"parameters": parameters, | ||
} | ||
|
||
@classmethod | ||
def from_response( | ||
cls, | ||
completion, | ||
throw_error: bool = True, | ||
validation_context=None, | ||
strict: bool = None, | ||
): | ||
"""Execute the function from the response of an openai chat completion | ||
Parameters: | ||
completion (openai.ChatCompletion): The response from an openai chat completion | ||
throw_error (bool): Whether to throw an error if the function call is not detected | ||
validation_context (dict): The validation context to use for validating the response | ||
strict (bool): Whether to use strict json parsing | ||
Returns: | ||
cls (OpenAISchema): An instance of the class | ||
""" | ||
message = completion["choices"][0]["message"] | ||
|
||
if throw_error: | ||
assert "function_call" in message, "No function call detected" | ||
assert ( | ||
message["function_call"]["name"] == cls.openai_schema["name"] | ||
), "Function name does not match" | ||
|
||
return cls.model_validate_json( | ||
message["function_call"]["arguments"], | ||
context=validation_context, | ||
strict=strict, | ||
) | ||
|
||
|
||
def openai_schema(cls) -> OpenAISchema: | ||
"""Pull the OpenAISchema for a BaseModel.""" | ||
if not issubclass(cls, BaseModel): | ||
raise TypeError("Class must be a subclass of pydantic.BaseModel") | ||
|
||
return wraps(cls, updated=())( | ||
create_model( | ||
cls.__name__, | ||
__base__=(cls, OpenAISchema), | ||
) | ||
) # type: ignore |