Skip to content

Commit

Permalink
bring in instructor's OpenAISchema
Browse files Browse the repository at this point in the history
  • Loading branch information
rgbkrk committed Nov 6, 2023
1 parent a40baf1 commit a1980cb
Showing 1 changed file with 245 additions and 0 deletions.
245 changes: 245 additions & 0 deletions chatlab/extractor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,245 @@
"""Extracting Pydantic Data Models from OpenAI Chat Models."""
## Originally from https://github.com/jxnl/instructor/blob/main/instructor/function_calls.py
##
## Brought over because chatlab is on the new `openai` bindings and likely soon a different version of pydantic.
##


# MIT License
#
# Copyright (c) 2023 Jason Liu
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import json
from functools import wraps
from typing import Any, Callable

from docstring_parser import parse
from pydantic import BaseModel, create_model, validate_arguments


class openai_function:
"""Decorator to convert a function into an OpenAI function.
This decorator will convert a function into an OpenAI function. The
function will be validated using pydantic and the schema will be
generated from the function signature.
Example:
```python
@openai_function
def sum(a: int, b: int) -> int:
return a + b
completion = openai.ChatCompletion.create(
...
messages=[{
"content": "What is 1 + 1?",
"role": "user"
}]
)
sum.from_response(completion)
# 2
```
"""

def __init__(self, func: Callable) -> None:
self.func = func
self.validate_func = validate_arguments(func)
self.docstring = parse(self.func.__doc__ or "")

parameters = self.validate_func.model.model_json_schema()
parameters["properties"] = {
k: v
for k, v in parameters["properties"].items()
if k not in ("v__duplicate_kwargs", "args", "kwargs")
}
for param in self.docstring.params:
if (name := param.arg_name) in parameters["properties"] and (
description := param.description
):
parameters["properties"][name]["description"] = description
parameters["required"] = sorted(
k for k, v in parameters["properties"].items() if "default" not in v
)
self.openai_schema = {
"name": self.func.__name__,
"description": self.docstring.short_description,
"parameters": parameters,
}
self.model = self.validate_func.model

def __call__(self, *args: Any, **kwargs: Any) -> Any:
@wraps(self.func)
def wrapper(*args, **kwargs):
return self.validate_func(*args, **kwargs)

return wrapper(*args, **kwargs)

def from_response(self, completion, throw_error=True, strict: bool = None):
"""
Parse the response from OpenAI's API and return the function call
Parameters:
completion (openai.ChatCompletion): The response from OpenAI's API
throw_error (bool): Whether to throw an error if the response does not contain a function call
Returns:
result (any): result of the function call
"""
message = completion["choices"][0]["message"]

if throw_error:
assert "function_call" in message, "No function call detected"
assert (
message["function_call"]["name"] == self.openai_schema["name"]
), "Function name does not match"

function_call = message["function_call"]
arguments = json.loads(function_call["arguments"], strict=strict)
return self.validate_func(**arguments)


class OpenAISchema(BaseModel):
"""Augments a Pydantic model with OpenAI's schema for function calling.
This class augments a Pydantic model with OpenAI's schema for function calling. The schema is generated from the model's signature and docstring. The schema can be used to validate the response from OpenAI's API and extract the function call.
## Usage
```python
from instructor import OpenAISchema
class User(OpenAISchema):
name: str
age: int
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{
"content": "Jason is 20 years old",
"role": "user"
}],
functions=[User.openai_schema],
function_call={"name": User.openai_schema["name"]},
)
user = User.from_response(completion)
print(user.model_dump())
```
## Result
```
{
"name": "Jason Liu",
"age": 20,
}
```
"""

@property
def openai_schema(cls):
"""Return the schema in the format of OpenAI's schema as jsonschema.
Note:
Its important to add a docstring to describe how to best use this class, it will be included in the description attribute and be part of the prompt.
Returns:
model_json_schema (dict): A dictionary in the format of OpenAI's schema as jsonschema
"""
schema = cls.model_json_schema()
docstring = parse(cls.__doc__ or "")
parameters = {
k: v for k, v in schema.items() if k not in ("title", "description")
}
for param in docstring.params:
if (name := param.arg_name) in parameters["properties"] and (
description := param.description
):
if "description" not in parameters["properties"][name]:
parameters["properties"][name]["description"] = description

parameters["required"] = sorted(
k for k, v in parameters["properties"].items() if "default" not in v
)

if "description" not in schema:
if docstring.short_description:
schema["description"] = docstring.short_description
else:
schema["description"] = (
f"Correctly extracted `{cls.__name__}` with all "
f"the required parameters with correct types"
)

return {
"name": schema["title"],
"description": schema["description"],
"parameters": parameters,
}

@classmethod
def from_response(
cls,
completion,
throw_error: bool = True,
validation_context=None,
strict: bool = None,
):
"""Execute the function from the response of an openai chat completion
Parameters:
completion (openai.ChatCompletion): The response from an openai chat completion
throw_error (bool): Whether to throw an error if the function call is not detected
validation_context (dict): The validation context to use for validating the response
strict (bool): Whether to use strict json parsing
Returns:
cls (OpenAISchema): An instance of the class
"""
message = completion["choices"][0]["message"]

if throw_error:
assert "function_call" in message, "No function call detected"
assert (
message["function_call"]["name"] == cls.openai_schema["name"]
), "Function name does not match"

return cls.model_validate_json(
message["function_call"]["arguments"],
context=validation_context,
strict=strict,
)


def openai_schema(cls) -> OpenAISchema:
"""Pull the OpenAISchema for a BaseModel."""
if not issubclass(cls, BaseModel):
raise TypeError("Class must be a subclass of pydantic.BaseModel")

return wraps(cls, updated=())(
create_model(
cls.__name__,
__base__=(cls, OpenAISchema),
)
) # type: ignore

0 comments on commit a1980cb

Please sign in to comment.