Methods for tableaux deductive system in Coq. With Poly.v one can implement different tableaux systems. In this repository, we have, currently, the following tableaux systems:
- Classical Propositional Logic (CL)
- Ecumenical Propositional Logic (
$E_T$ ) - Paraconsistent
$C_n$ Logics
We define the set of propositions
Let
The other connectives are then defined as follows (see CL/CL1.v).
$\neg A := A \downarrow A$ $A \land B := (A \downarrow A) \downarrow (B \downarrow B)$ $A \lor B := (A \downarrow B) \downarrow (A \downarrow B)$ $A \to B := ((A \downarrow A) \downarrow B) \downarrow ((A \downarrow A) \downarrow B)$
To run with default examples, open the root folder inside some terminal. In the terminal, run:
chmod +x Run.sh
Then:
./Run.sh <logic> <implementation>
Where <logic>
is one of the following:
CL
ET
and <implementation>
is one of the following:
1
2
- etc.
Examples:
./Run.sh ET 1
Please look inside of each file for specific orientations about how to run with different examples.
- Coq 8.13.2 or later.
- Leme, R., Coniglio, M., Lopes, B. et al. Ecumenical Propositional Tableau. Stud Logica (2024). https://doi.org/10.1007/s11225-023-10091-0