Skip to content
/ HPML Public

HPML is a high performance mathematics library for computational science & 3d applications

License

Notifications You must be signed in to change notification settings

ravi688/HPML

Repository files navigation

Mathematics Library for Computer Graphics & Numerical Computing

  • In-depth documention is embedded in the header files
  • You can find overview of the library in Getting Started section

Buy Me A Coffee

Features

  • Vector Mathematics

    • 2D vectors

    • 3D Vectors

    • 4D Vectors

  • Matrix Mathematics

    • 2x2 Matrix operations

    • 3x3 Matrix operations [WIP]

    • 4x4 Matrix operations

  • Quaternion Mathematics

    • Interpolations

    • Rotations

    • Conversion to euler angles [WIP]

    • Euler angles to Quaternion [WIP]

  • Complex Mathematics [WIP]

Getting Started

Types
Mathematical Type Description HPML Type
Vector 2D a 2 dimensional vector vec2_t
Vector 3D a 3 dimensional vector vec3_t
Vector 4D a 4 dimensional vector vec4_t
Quaternion a quaternion quat_t
Matrix 2x2 a 2x2 square matrix mat2_t
Matrix 3x3 a 3x3 square matrix mat3_t
Matrix 4x4 a 4x4 square matrix, sizeof(mat4_t) != 64 bytes mat4_t
Raw Matrix 4x4 a 4x4 square matrix, sizeof(_mat4_t) == 64 bytes _mat4_t
Complex Number a complex number complex_t

Vectors

2D Vectors

vec2_t v = { 1.0f, 2.0f };              // initializer
vec2_t position = vec2(1.3f, 4.5f);     // constructor function

position = VEC2 { 4.5f, 3.2f };         // re-assigning th value

// constant vectors
vec2_t up = vec2_up(); // or vec2_down()
vec2_t left = vec2_left(); // or vec2_right()

vec2_t null_vector = vec2_null(); // or vec2_zero();

if(vec2_is_null(null_vector))            // checks if the vector is null
    printf("Vector is null\n");

// adding & subtracting vectors
vec2_t final_position = vec2_add(2, position, vec2_down());
vec2_t another_position = vec2_sub(2, position, vec2_up());

// adding & subtracting more than 2 vectors at once
final_position = vec2_add(3, position, vec2_down(), vec2_left());
another_position = vec2_sub(3, position, vec2_down(), vec2_left());

// printing on the console window for debugging purpose
vec2_print(final_position);        // final_position: (x, y)
vec2_print(another_position);      // another_position: (x, y)

// interpolations [linear interpolation, and spherical linear interpolation]
vec2_t interpolated_vector = vec2_lerp(vec2(1.0f, 2.0f), vec2(4.0f, 5.0f), 0.2f);
vec2_t slerped_vector = vec2_slerp(vec2(1.0f, 2.0f), vec2(4.0f, 5.0f), 0.2f);
vec2_print(interpolated_vector);
vec2_print(slerped_vector);

3D Vectors

vec3_t v = { 1.0f, 2.0f, 3.0f };              // initializer
vec3_t position = vec3(1.3f, 4.5f, 3.4f);     // constructor function

position = VEC3 { 4.5f, 3.2f, 6.7f };         // re-assigning the value


// constant vectors
vec3_t up = vec3_up();     // or vec3_down()
vec3_t left = vec3_left(); // or vec3_right()

vec3_t null_vector = vec3_null(); // or vec3_zero()

if(vec3_is_null(null_vector))
    printf("Vector is null\n");         // checks if the vector is null


// adding & subtracting vectors
vec3_t final_position = vec3_add(2, position, vec3_down());
vec3_t another_position = vec3_sub(2, position, vec2_up());

// adding & subtracting more than 2 vectors at once
final_position = vec3_add(3, position, vec3_down(), vec3_left());
another_position = vec3_sub(3, position, vec3_down(), vec3_left());

// printing on the console window for debugging purpose
vec3_print(final_position);        // final_position: (x, y, z)
vec3_print(another_position);      // another_position: (x, y, z)

// interpolations [linear interpolation, and spherical linear interpolation]
vec3_t interpolated_vector = vec3_lerp(vec2(1.0f, 2.0f, 5.0f), vec2(4.0f, 5.0f, 2.0f), 0.2f);
vec3_t slerped_vector = vec3_slerp(vec2(1.0f, 2.0f, 5.0f), vec2(4.0f, 5.0f, 2.0f), 0.2f);
vec3_print(interpolated_vector);
vec3_print(slerped_vector);

Matrices

2x2 Matrices

  // initializer
  mat2_t m = { 1.0f, 0.0f, 0.0f, 1.0f };
  // matrix constructor of dimensions 2x2
  mat2_t m1 = mat2(1.0f, 0.0f, 0.0f, 1.0f);

  // identity matrix of dimensions 2x2
  m = mat2_identity();

  // trace calculation, i.e. sum of diagonal elements from left to right
  float t = mat2_trace(m1);

  // addition
  mat2_t m2 = mat2_add(m, m1);

  // multiply with scalar
  mat2_t m3 = mat2_mul_with_scalar(m2, 5.0f)

   //  linear interpolation calculation for each elements of the matrices
  mat2_t lp = mat2_lerp(m2, m3, 0.7f);

  // calculates and returns approx 90 degree anticlockwise 2D rotation matrix
  mat2_t rotation = mat2_rotation(1.57)

  // calculates and returns inverse of a 2x2 matrix (non-singular matrix)
  mat2_t opp_rot = mat2_inverse(rotation)

  // print the elements of 2x2 matrix to stdout
  mat2_print(opp_rot);

4x4 Matrices

// initializer
mat4_t m =
{
  1.0f, 0.0f, 0.0f, 0.0f,
  0.0f, 1.0f, 0.0f, 0.0f,
  0.0f, 0.0f, 1.0f, 0.0f,
  0.0f, 0.0f, 0.0f, 1.0f
};
// matrix constructor of dimensions 4x4
mat4_t m1 = mat4(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);

// identity matrix of dimensions 4x4
m = mat4_identity();

// copy contents of m1 matrix into m1 matrix
mat4_copy(m, m1);
// move identity matrix (r-value) into m matrix
mat4_move(m, mat4_identity());

// returns the last column (considered as position vector in a translation vector)
vec4_t position = mat4_get_position(m);
// returns the euler angles rotation along each axis in radians in a RTS matrix
vec4_t euler_angles = mat4_get_rotation(m);
// returns the diagonal elements from left to right
vec4_t scale = mat4_get_scale(m);

// calculates and returns determinant of 4x4 matrix
float det = mat4_det(m);

// multiply 2 4x4 matrices together, associates from right to left
mat4_t product = mat4_mul(2, m, m1);

// creates a scale matrix (a diagonal matrix) which scales x, y and z components by 2.0f
mat4_t scale_matrix = mat4_diagonal(2.0f, 2.0f, 2.0f, 1.0f);

// multiply 4x4 matrix by 2.0f (a scalar)
mat4_t t = mat4_mul_scalar(scale_matrix, 2.0f);

// multiplies each components of first matrix to the correponding components of second matrix
mat4_t t1 = mat4_mul_component_wise(scale_matrix, scale_matrix);

// transposes 4x4 matrix along the left-to-right diagonal
mat4_t trans = mat4_transpose(t1);

// linearly interpolates each components of the two matrices
mat4_t l = mat4_lerp(t1, t, 0.7f);

// calculates and returns inverse of 4x4 non-singular matrix, if the matrix is singular then throws an exception
mat4_t inv = mat4_inverse(l);

// prints the components of a 4x4 matrix on stdout
mat4_print(inv);

NOTE: To convert mat4_t to raw _mat4_t: simply access the union member raw4x4f32 in mat4_t object.

Quaternions [TODO]

Complex Numbers [TODO]

About me

Youtube

LinkedIn

GitHub