Skip to content

Commit

Permalink
Merge branch 'branch-25.02' into b25.02-bench-algo-updates
Browse files Browse the repository at this point in the history
  • Loading branch information
nv-rliu authored Jan 2, 2025
2 parents aaf5dc0 + 511d06f commit ba1f18b
Show file tree
Hide file tree
Showing 9 changed files with 135 additions and 5 deletions.
42 changes: 42 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# nx-cugraph 24.12.00 (11 Dec 2024)

## 🚨 Breaking Changes

- Add `nx-cugraph` Package Publishing ([#16](https://github.com/rapidsai/nx-cugraph/pull/16)) [@nv-rliu](https://github.com/nv-rliu)
- Merge fast-forwarded files from cugraph into nx-cugraph ([#13](https://github.com/rapidsai/nx-cugraph/pull/13)) [@nv-rliu](https://github.com/nv-rliu)
- Update `.pre-commit-config.yaml` and Implement Suggestions ([#12](https://github.com/rapidsai/nx-cugraph/pull/12)) [@nv-rliu](https://github.com/nv-rliu)
- [CI] Adding CI Workflows: checks, changed-files, builds ([#6](https://github.com/rapidsai/nx-cugraph/pull/6)) [@nv-rliu](https://github.com/nv-rliu)
- Setting Up New Repo, Adding Files, etc. ([#5](https://github.com/rapidsai/nx-cugraph/pull/5)) [@nv-rliu](https://github.com/nv-rliu)

## 🐛 Bug Fixes

- Add sphinx-lint pre-commit (and some docs fixes) ([#29](https://github.com/rapidsai/nx-cugraph/pull/29)) [@eriknw](https://github.com/eriknw)
- Update and test `_nx_cugraph._check_networkx_version` ([#24](https://github.com/rapidsai/nx-cugraph/pull/24)) [@eriknw](https://github.com/eriknw)
- Remove automatic "Python" labeler ([#23](https://github.com/rapidsai/nx-cugraph/pull/23)) [@eriknw](https://github.com/eriknw)

## 📖 Documentation

- Remove `docs/` directory ([#37](https://github.com/rapidsai/nx-cugraph/pull/37)) [@eriknw](https://github.com/eriknw)

## 🛠️ Improvements

- Small Updates to Benchmarks Directory ([#48](https://github.com/rapidsai/nx-cugraph/pull/48)) [@nv-rliu](https://github.com/nv-rliu)
- Includes all deferred conversion costs in benchmarks ([#34](https://github.com/rapidsai/nx-cugraph/pull/34)) [@rlratzel](https://github.com/rlratzel)
- Add Bipartite Betweenness Centrality ([#32](https://github.com/rapidsai/nx-cugraph/pull/32)) [@nv-rliu](https://github.com/nv-rliu)
- Change `degree_type` of `core_number` to `"outgoing"` ([#28](https://github.com/rapidsai/nx-cugraph/pull/28)) [@eriknw](https://github.com/eriknw)
- Drop support for NetworkX 3.0 and 3.1 ([#27](https://github.com/rapidsai/nx-cugraph/pull/27)) [@eriknw](https://github.com/eriknw)
- remove versioning workaround for nightlies ([#26](https://github.com/rapidsai/nx-cugraph/pull/26)) [@jameslamb](https://github.com/jameslamb)
- add devcontainers ([#25](https://github.com/rapidsai/nx-cugraph/pull/25)) [@jameslamb](https://github.com/jameslamb)
- Add pre-commit hook to disallow improper comparison to `_nxver` ([#22](https://github.com/rapidsai/nx-cugraph/pull/22)) [@eriknw](https://github.com/eriknw)
- Add notebooks/demo/accelerating_networkx.ipynb ([#21](https://github.com/rapidsai/nx-cugraph/pull/21)) [@eriknw](https://github.com/eriknw)
- enforce wheel size limits, README formatting in CI ([#19](https://github.com/rapidsai/nx-cugraph/pull/19)) [@jameslamb](https://github.com/jameslamb)
- Faster `shortest_path` ([#18](https://github.com/rapidsai/nx-cugraph/pull/18)) [@eriknw](https://github.com/eriknw)
- nx-cugraph: dispatch graph method to gpu or cpu ([#17](https://github.com/rapidsai/nx-cugraph/pull/17)) [@eriknw](https://github.com/eriknw)
- Add `nx-cugraph` Package Publishing ([#16](https://github.com/rapidsai/nx-cugraph/pull/16)) [@nv-rliu](https://github.com/nv-rliu)
- add CI workflows running tests ([#15](https://github.com/rapidsai/nx-cugraph/pull/15)) [@jameslamb](https://github.com/jameslamb)
- remove more cugraph-only details, other miscellaneous build/packaging changes ([#14](https://github.com/rapidsai/nx-cugraph/pull/14)) [@jameslamb](https://github.com/jameslamb)
- Merge fast-forwarded files from cugraph into nx-cugraph ([#13](https://github.com/rapidsai/nx-cugraph/pull/13)) [@nv-rliu](https://github.com/nv-rliu)
- Update `.pre-commit-config.yaml` and Implement Suggestions ([#12](https://github.com/rapidsai/nx-cugraph/pull/12)) [@nv-rliu](https://github.com/nv-rliu)
- Adding a `dependencies.yaml` file ([#9](https://github.com/rapidsai/nx-cugraph/pull/9)) [@nv-rliu](https://github.com/nv-rliu)
- [CI] Adding CI Workflows: checks, changed-files, builds ([#6](https://github.com/rapidsai/nx-cugraph/pull/6)) [@nv-rliu](https://github.com/nv-rliu)
- Setting Up New Repo, Adding Files, etc. ([#5](https://github.com/rapidsai/nx-cugraph/pull/5)) [@nv-rliu](https://github.com/nv-rliu)
6 changes: 4 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ nx.betweenness_centrality(nxcg_G, k=1000) # nxcg Graph type causes cugraph back
## Supported Algorithms

The nx-cugraph backend to NetworkX connects
[pylibcugraph](../../readme_pages/pylibcugraph.md) (cuGraph's low-level python
[pylibcugraph](https://github.com/rapidsai/cugraph/blob/-/readme_pages/pylibcugraph.md) (cuGraph's low-level python
interface to its CUDA-based graph analytics library) and
[CuPy](https://cupy.dev/) (a GPU-accelerated array library) to NetworkX's
familiar and easy-to-use API.
Expand All @@ -105,6 +105,8 @@ Below is the list of algorithms that are currently supported in nx-cugraph.

<pre>
<a href="https://networkx.org/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite">bipartite</a>
├─ <a href="https://networkx.org/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite.centrality">centrality</a>
│ └─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.bipartite.centrality.betweenness_centrality.html#networkx.algorithms.bipartite.centrality.betweenness_centrality">betweenness_centrality</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/bipartite.html#module-networkx.algorithms.bipartite.generators">generators</a>
└─ <a href="https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.bipartite.generators.complete_bipartite_graph.html#networkx.algorithms.bipartite.generators.complete_bipartite_graph">complete_bipartite_graph</a>
<a href="https://networkx.org/documentation/stable/reference/algorithms/centrality.html#module-networkx.algorithms.centrality">centrality</a>
Expand Down Expand Up @@ -275,4 +277,4 @@ Below is the list of algorithms that are currently supported in nx-cugraph.
</pre>

To request nx-cugraph backend support for a NetworkX API that is not listed
above, visit the [cuGraph GitHub repo](https://github.com/rapidsai/cugraph).
above, visit the [nx-cugraph GitHub repo](https://github.com/rapidsai/nx-cugraph).
1 change: 1 addition & 0 deletions _nx_cugraph/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@
"bfs_successors",
"bfs_tree",
"bidirectional_shortest_path",
"bipartite_betweenness_centrality",
"bull_graph",
"caveman_graph",
"chvatal_graph",
Expand Down
21 changes: 21 additions & 0 deletions benchmarks/pytest-based/bench_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -877,6 +877,27 @@ def bench_ego_graph(benchmark, graph_obj, backend_wrapper):
assert type(result) is type(G)


def bench_bipartite_BC_n1000_m3000_k100000(benchmark, backend_wrapper):
# Example how to run:
# $ pytest -sv -k "bench_bipartite_BC" \
# --benchmark-json="logs/None__bipartite_BC__None.json" \
# bench_algos.py
n = 1000
m = 3000
k = 100000
graph_obj = nx.bipartite.generators.gnmk_random_graph(n, m, k)
G = get_graph_obj_for_benchmark(graph_obj, backend_wrapper)
nodes = list(range(n))
result = benchmark.pedantic(
target=backend_wrapper(nx.bipartite.betweenness_centrality),
args=(G, nodes),
rounds=rounds,
iterations=iterations,
warmup_rounds=warmup_rounds,
)
assert type(result) is dict


@pytest.mark.skip(reason="benchmark not implemented")
def bench_complete_bipartite_graph(benchmark, graph_obj, backend_wrapper):
pass
Expand Down
2 changes: 1 addition & 1 deletion conda/environments/all_cuda-118_arch-x86_64.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,9 @@ dependencies:
- recommonmark
- scipy
- setuptools>=61.0.0
- sphinx
- sphinx-copybutton
- sphinx-markdown-tables
- sphinx<6
- sphinxcontrib-websupport
- wheel
name: all_cuda-118_arch-x86_64
2 changes: 1 addition & 1 deletion conda/environments/all_cuda-125_arch-x86_64.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,9 @@ dependencies:
- recommonmark
- scipy
- setuptools>=61.0.0
- sphinx
- sphinx-copybutton
- sphinx-markdown-tables
- sphinx<6
- sphinxcontrib-websupport
- wheel
name: all_cuda-125_arch-x86_64
2 changes: 1 addition & 1 deletion dependencies.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ dependencies:
- recommonmark
- sphinx-copybutton
- sphinx-markdown-tables
- sphinx<6
- sphinx
- sphinxcontrib-websupport
py_version:
specific:
Expand Down
2 changes: 2 additions & 0 deletions nx_cugraph/algorithms/bipartite/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,4 +10,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .centrality import *
from .generators import *
62 changes: 62 additions & 0 deletions nx_cugraph/algorithms/bipartite/centrality.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# Copyright (c) 2024, NVIDIA CORPORATION.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cupy as cp
import pylibcugraph as plc

from nx_cugraph.convert import _to_graph
from nx_cugraph.utils import networkx_algorithm

__all__ = ["betweenness_centrality"]


@networkx_algorithm(
name="bipartite_betweenness_centrality",
version_added="24.12",
_plc="betweenness_centrality",
)
def betweenness_centrality(G, nodes):
G = _to_graph(G)

node_ids, values = plc.betweenness_centrality(
resource_handle=plc.ResourceHandle(),
graph=G._get_plc_graph(),
k=None,
random_state=None,
normalized=False,
include_endpoints=False,
do_expensive_check=False,
)
top_node_ids = G._nodekeys_to_nodearray(set(nodes))
bottom_node_ids = cp.delete(cp.arange(G._N, dtype=top_node_ids.dtype), top_node_ids)
n = top_node_ids.size
m = bottom_node_ids.size
s, t = divmod(n - 1, m)
bet_max_top = (
((m**2) * ((s + 1) ** 2))
+ (m * (s + 1) * (2 * t - s - 1))
- (t * ((2 * s) - t + 3))
) / 2.0
p, r = divmod(m - 1, n)
bet_max_bot = (
((n**2) * ((p + 1) ** 2))
+ (n * (p + 1) * (2 * r - p - 1))
- (r * ((2 * p) - r + 3))
) / 2.0

values = values[cp.argsort(node_ids)]

values[top_node_ids] /= bet_max_top
values[bottom_node_ids] /= bet_max_bot

return G._nodearray_to_dict(values)

0 comments on commit ba1f18b

Please sign in to comment.