Skip to content

πŸ₯—take YOLOv3 as instance Convert ToolKits

License

Notifications You must be signed in to change notification settings

qtw1998/COCOAPI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b9cb926 Β· Apr 27, 2020

History

19 Commits
Apr 23, 2020
Apr 23, 2020
Apr 23, 2020
Apr 27, 2020
Apr 23, 2020
Apr 23, 2020
Apr 23, 2020
Apr 27, 2020
Apr 23, 2020
Apr 23, 2020
Apr 23, 2020
Apr 27, 2020
Apr 23, 2020
Apr 23, 2020
Apr 23, 2020
Apr 23, 2020
Apr 23, 2020
Apr 23, 2020
Apr 23, 2020
Apr 23, 2020

Repository files navigation

COCOAPI & Conversion Scripts

take YOLOv3 as instance

1 Waiting List

  • Restructured the COCO API Remember download pycocotools filefolder at the same time.

    cocoMetrix.py

  • Upload the Conversion Codes

    • COCO/VOC β†’ DarkNet form

      dataset_convert_toolKits/vocAndCOCO2DarkNet

    • BDD100K(JSON) β†’ VOC(XML & TXT)

      dataset_convert_toolKits/BDD100KformJson2VOCform

    • VOC(XML & TXT) β†’COCO(JSON-integrated)

    • TFRecord & validation-JSON

2 Usage

2.1 COCO-API criteria

2.1.1 Default settings

image-20200423205351356

2.1.2 Testing Results on BDD100K (YOLOv3-SPP3)

(xxxx) [xxxxx@head1 yolov3]$ CUDA_VISIBLE_DEVICES=3,4,5,6,7 python test.py
True
Namespace(augment=False, batch_size=120, cfg='cfg/yolov3-spp3.cfg', conf_thres=0.001, data='data/bdd100k.data', device='', img_size=640, iou_thres=0.7, save_json=False, single_cls=False, task='test', weights='/cluster/home/qiaotianwei/yolo/yolov33/bdd100k_yolov3-spp3_final.weights')
True
Using CUDA device0 _CudaDeviceProperties(name='GeForce RTX 2080 Ti', total_memory=11019MB)
           device1 _CudaDeviceProperties(name='GeForce RTX 2080 Ti', total_memory=11019MB)
           device2 _CudaDeviceProperties(name='GeForce RTX 2080 Ti', total_memory=11019MB)
           device3 _CudaDeviceProperties(name='GeForce RTX 2080 Ti', total_memory=11019MB)
           device4 _CudaDeviceProperties(name='GeForce RTX 2080 Ti', total_memory=11019MB)

cuda:0
Model Summary: 225 layers, 6.38998e+07 parameters, 6.38998e+07 gradients
Fusing layers...
Model Summary: 152 layers, 6.38729e+07 parameters, 6.38729e+07 gradients
Reading image shapes: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 9999/9999 [00:00<00:00, 13994.62it/s]
Caching labels (9999 found, 0 missing, 0 empty, 0 duplicate, for 9999 images): 100%|β–ˆβ–ˆβ–ˆ| 9999/9999 [00:01<00:00, 5105.47it/s]
loading annotations into memory...
Done (t=1.37s)
creating index...
index created!
               Class    Images   Targets         P         R   mAP@0.5        F1: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 84/84 [05:21<00:00,  3.82s/it]
                 all     1e+04  1.86e+05     0.313     0.494     0.399     0.382
                 car     1e+04  1.02e+05     0.441     0.758     0.687     0.557
                 bus     1e+04   1.6e+03     0.399     0.546     0.495     0.461
              person     1e+04  1.33e+04     0.321     0.578     0.449     0.413
                bike     1e+04  1.01e+03     0.277     0.429     0.304     0.336
               truck     1e+04  4.24e+03       0.4      0.58     0.508     0.473
               motor     1e+04       452     0.283     0.358     0.252     0.316
               train     1e+04        15         0         0         0         0
               rider     1e+04       649     0.286      0.41     0.305     0.337
        traffic sign     1e+04  3.49e+04     0.377     0.652     0.543     0.477
       traffic light     1e+04  2.69e+04     0.348     0.628     0.444     0.448
Speed: 5.8/2.3/8.0 ms inference/NMS/total per 640x640 image at batch-size 120
creating index...
index created!
Accumulating evaluation results...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.172
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.374
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.138
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.055
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.233
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.338
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.147
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.316
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.370
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.192
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.464
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.538

Source Codes: dataset_convert_toolKits/BDD100KformJson2VOCform

python bdd2voc.py --srcDir=xxxx --outputRoot=xxxx

Object Detection annotation Convert to Yolo Darknet Format

Support DataSet :

  1. COCO
  2. VOC

πŸ₯README

About

πŸ₯—take YOLOv3 as instance Convert ToolKits

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published