通过Plug-in ML框架,用户不需要重新编写并行程序,而是将已有的,使用任何编程语言编写的串行机器学习程序, 通过接口直接与我们所设计的计算框架对接,从而快速完成机器学习算法并行化的任务。 除此之外,该框架针对分布式机器学习应用的特点进行各种优化,并且在对用户透明的前提下提供完善的错误恢复机制。
本项目由北京大学网络所云计算组开发,项目受到国家自然科学基金(项目号:61572044)的支持和肖臻研究员的指导。 云计算组研究方向包括分布式计算和机器学习,更多信息请访问云计算组主页
Please see the installation guide
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.7.1/protobuf-cpp-3.7.1.tar.gz
cd protobuf-3.7.1
./configure
make -j8
make check
sudo make install
sudo ldconfig
# download the tar from this page
# http://zookeeper.apache.org/
# compile the cpp client
# according to this page:
# https://github.com/apache/zookeeper/tree/release-3.4.14/zookeeper-client/zookeeper-client-c
cd zookeeper-x.x.x/zookeeper-client/zookeeper-client-c
sudo apt-get install libcppunit-dev
# cppunit.m4 may be installed in the /usr/share/aclocal
# or in the /usr/local/share/aclocal
# use the script below to generate the configure file
ACLOCAL="aclocal -I /usr/local/share/aclocal" autoreconf -if
make [run-check | check]
sudo make install
If using the zookeeper component, please add the 'USE_ZOOKEEPER' defination into the compiler.
git clone https://github.com/purkyston/rpscc
cd rpscc
git submodule init
git submodule update
mkdir build & cd build
cmake ..
make
./server_main --master_ip_port=162.105.146.128:16666 --server_port=17777
./agent_main --net_interface=eno1 --listen_port=15555 --master_ip_port=162.105.146.128:16666
python Linear_Regression.py
./master_main --worker_num=1 --server_num=1 --listen_port=16666 --master_ip_port=162.105.146.128:16666 --key_range=100 --bound=1
This scripts will automatically generate protobuf files.
Please follow our TODO.md