Skip to content

Create user-friendly accessor functions from a database connection

License

Notifications You must be signed in to change notification settings

pipeline-tools/dbcooper

Repository files navigation

dbcooper

R-CMD-check

The dbcooper package turns a database connection into a collection of functions, handling logic for keeping track of connections and letting you take advantage of autocompletion when exploring a database.

It's especially helpful to use when authoring database-specific R packages, for instance in an internal company package or one wrapping a public data source.

The package's name is a reference to the bandit D.B. Cooper.

Installation

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("pipeline-tools/dbcooper")

Example

Initializing the functions

The dbcooper package asks you to create the connection first. As an example, we'll use the Lahman baseball database packaged with dbplyr.

library(dplyr)

lahman_db <- dbplyr::lahman_sqlite()
lahman_db
#> <SQLiteConnection>
#>   Path: /tmp/RtmpeApR4v/lahman.sqlite
#>   Extensions: TRUE

You set up dbcooper with the dbc_init function, passing it a prefix lahman that will apply to all the functions it creates.

library(dbcooper)
dbc_init(lahman_db, "lahman")

dbc_init then creates user-friendly accessor functions in your global environment. (You could also pass it an environment in which the functions will be created).

Using database functions

dbc_init adds several functions when it initializes a database source. In this case, each will start with the lahman_ prefix.

  • _list: Get a list of tables
  • _tbl: Access a table that can be worked with in dbplyr
  • _query: Perform of a SQL query and work with the result
  • _execute: Execute a query (such as a CREATE or DROP)
  • _src: Retrieve a dbi_src for the database

For instance, we could start by finding the names of the tables in the Lahman database.

lahman_list()
#>  [1] "AllstarFull"         "Appearances"         "AwardsManagers"      "AwardsPlayers"       "AwardsShareManagers" "AwardsSharePlayers"  "Batting"             "BattingPost"        
#>  [9] "CollegePlaying"      "Fielding"            "FieldingOF"          "FieldingOFsplit"     "FieldingPost"        "HallOfFame"          "HomeGames"           "LahmanData"         
#> [17] "Managers"            "ManagersHalf"        "Parks"               "People"              "Pitching"            "PitchingPost"        "Salaries"            "Schools"            
#> [25] "SeriesPost"          "Teams"               "TeamsFranchises"     "TeamsHalf"           "sqlite_stat1"        "sqlite_stat4"

We can access one of these tables with lahman_tbl(), then put it through any kind of dplyr operation.

lahman_tbl("Batting")
#> # Source:   SQL [?? x 22]
#> # Database: sqlite 3.39.2 [/tmp/RtmpeApR4v/lahman.sqlite]
#>    playerID  yearID stint teamID lgID      G    AB     R     H   X2B   X3B    HR   RBI    SB    CS    BB    SO   IBB   HBP    SH    SF  GIDP
#>    <chr>      <int> <int> <chr>  <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1 abercda01   1871     1 TRO    NA        1     4     0     0     0     0     0     0     0     0     0     0    NA    NA    NA    NA     0
#>  2 addybo01    1871     1 RC1    NA       25   118    30    32     6     0     0    13     8     1     4     0    NA    NA    NA    NA     0
#>  3 allisar01   1871     1 CL1    NA       29   137    28    40     4     5     0    19     3     1     2     5    NA    NA    NA    NA     1
#>  4 allisdo01   1871     1 WS3    NA       27   133    28    44    10     2     2    27     1     1     0     2    NA    NA    NA    NA     0
#>  5 ansonca01   1871     1 RC1    NA       25   120    29    39    11     3     0    16     6     2     2     1    NA    NA    NA    NA     0
#>  6 armstbo01   1871     1 FW1    NA       12    49     9    11     2     1     0     5     0     1     0     1    NA    NA    NA    NA     0
#>  7 barkeal01   1871     1 RC1    NA        1     4     0     1     0     0     0     2     0     0     1     0    NA    NA    NA    NA     0
#>  8 barnero01   1871     1 BS1    NA       31   157    66    63    10     9     0    34    11     6    13     1    NA    NA    NA    NA     1
#>  9 barrebi01   1871     1 FW1    NA        1     5     1     1     1     0     0     1     0     0     0     0    NA    NA    NA    NA     0
#> 10 barrofr01   1871     1 BS1    NA       18    86    13    13     2     1     0    11     1     0     0     0    NA    NA    NA    NA     0
#> # … with more rows

lahman_tbl("Batting") %>%
  count(teamID, sort = TRUE)
#> # Source:     SQL [?? x 2]
#> # Database:   sqlite 3.39.2 [/tmp/RtmpeApR4v/lahman.sqlite]
#> # Ordered by: desc(n)
#>    teamID     n
#>    <chr>  <int>
#>  1 CHN     5129
#>  2 PHI     5026
#>  3 PIT     4984
#>  4 SLN     4904
#>  5 CIN     4786
#>  6 CLE     4731
#>  7 BOS     4571
#>  8 NYA     4530
#>  9 CHA     4523
#> 10 DET     4462
#> # … with more rows

If we'd rather write SQL than dplyr, we could also run lahman_query() (which can also take a filename).

lahman_query("SELECT
                playerID,
                sum(AB) as AB
              FROM Batting
              GROUP BY playerID")
#> # Source:   SQL [?? x 2]
#> # Database: sqlite 3.39.2 [/tmp/RtmpeApR4v/lahman.sqlite]
#>    playerID     AB
#>    <chr>     <int>
#>  1 aardsda01     4
#>  2 aaronha01 12364
#>  3 aaronto01   944
#>  4 aasedo01      5
#>  5 abadan01     21
#>  6 abadfe01      9
#>  7 abadijo01    49
#>  8 abbated01  3044
#>  9 abbeybe01   225
#> 10 abbeych01  1756
#> # … with more rows

Finally, lahman_execute() is for commands like CREATE and DROP that don't return a table, but rather execute a command on the database.

lahman_execute("CREATE TABLE Players AS
                  SELECT playerID, SUM(AB) AS AB
                  FROM Batting
                  GROUP BY playerID")
#> [1] 0

lahman_tbl("Players")
#> # Source:   SQL [?? x 2]
#> # Database: sqlite 3.39.2 [/tmp/RtmpeApR4v/lahman.sqlite]
#>    playerID     AB
#>    <chr>     <int>
#>  1 aardsda01     4
#>  2 aaronha01 12364
#>  3 aaronto01   944
#>  4 aasedo01      5
#>  5 abadan01     21
#>  6 abadfe01      9
#>  7 abadijo01    49
#>  8 abbated01  3044
#>  9 abbeybe01   225
#> 10 abbeych01  1756
#> # … with more rows

lahman_execute("DROP TABLE Players")
#> [1] 0

Autocompleted tables

Besides the _list, _tbl, _query, and _execute functions, the package also creates auto-completed table accessors.

# Same result as lahman_tbl("Batting")
lahman_batting()
#> # Source:   SQL [?? x 22]
#> # Database: sqlite 3.39.2 [/tmp/RtmpeApR4v/lahman.sqlite]
#>    playerID  yearID stint teamID lgID      G    AB     R     H   X2B   X3B    HR   RBI    SB    CS    BB    SO   IBB   HBP    SH    SF  GIDP
#>    <chr>      <int> <int> <chr>  <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1 abercda01   1871     1 TRO    NA        1     4     0     0     0     0     0     0     0     0     0     0    NA    NA    NA    NA     0
#>  2 addybo01    1871     1 RC1    NA       25   118    30    32     6     0     0    13     8     1     4     0    NA    NA    NA    NA     0
#>  3 allisar01   1871     1 CL1    NA       29   137    28    40     4     5     0    19     3     1     2     5    NA    NA    NA    NA     1
#>  4 allisdo01   1871     1 WS3    NA       27   133    28    44    10     2     2    27     1     1     0     2    NA    NA    NA    NA     0
#>  5 ansonca01   1871     1 RC1    NA       25   120    29    39    11     3     0    16     6     2     2     1    NA    NA    NA    NA     0
#>  6 armstbo01   1871     1 FW1    NA       12    49     9    11     2     1     0     5     0     1     0     1    NA    NA    NA    NA     0
#>  7 barkeal01   1871     1 RC1    NA        1     4     0     1     0     0     0     2     0     0     1     0    NA    NA    NA    NA     0
#>  8 barnero01   1871     1 BS1    NA       31   157    66    63    10     9     0    34    11     6    13     1    NA    NA    NA    NA     1
#>  9 barrebi01   1871     1 FW1    NA        1     5     1     1     1     0     0     1     0     0     0     0    NA    NA    NA    NA     0
#> 10 barrofr01   1871     1 BS1    NA       18    86    13    13     2     1     0    11     1     0     0     0    NA    NA    NA    NA     0
#> # … with more rows

# Same result as lahman_tbl("Managers") %>% count()
lahman_managers() %>%
  count()
#> # Source:   SQL [1 x 1]
#> # Database: sqlite 3.39.2 [/tmp/RtmpeApR4v/lahman.sqlite]
#>       n
#>   <int>
#> 1  3684

These are useful because they let you use auto-complete to complete table names as you're exploring a data source.

Code of Conduct

Please note that the 'dbcooper' project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

About

Create user-friendly accessor functions from a database connection

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages