Skip to content

PyTorch implementation for "Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning"

Notifications You must be signed in to change notification settings

pgu-nd/PVIS22-S2V

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning

This repository contains the PyTorch implementation for paper "Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning".

Prerequisites

  • Linux
  • CUDA >= 10.0
  • Python >= 3.7
  • Numpy
  • Pytorch >= 1.0

How to run the code

  • First, change the directory path and parameter settings (e.g., batch size, samples etc.) in main.py.
  • Second, to train the model, simply call python3 main.py --train train.
  • Third, to inference the new data, simply call python3 main.py --train infer.

Citation

@inproceedings{gu2022scalar2vec,
title={Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning},
author={Gu, Pengfei and Han, Jun and Chen, Danny Z and Wang, Chaoli},
booktitle={2022 IEEE 15th Pacific Visualization Symposium (PacificVis)},
pages={31--40},
year={2022},
organization={IEEE}
}

Acknowledgements

This research was supported in part by the U.S. National Science Foundation through grants IIS-1455886, CNS-1629914, DUE-1833129, IIS-1955395, IIS-2101696, and OAC-2104158.

About

PyTorch implementation for "Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published